Concept explainers
Review. Consider a capacitor with vacuum between its large, closely spaced, oppositely charged parallel plates. (a) Show that the force on one plate can be accounted for by thinking of the electric field between the plates as exerting a “negative pressure” equal to the energy density of the electric field. (b) Consider two infinite plane sheets carrying
(a)
To show: The force on one plate can be accounted for by thinking of the electrical field between the plates as exerting a negative pressure equal to the energy density of the electric field.
Answer to Problem 32.60AP
Explanation of Solution
The formula to force between the plates of capacitor is,
Here,
The formula to calculate electric field produced by negative capacitor plate is,
The formula to calculate electric field produced by positive capacitor plate is,
The formula to calculate net electric field produced between the plates is,
Substitute
The energy density of capacitor is,
Substitute
Rearrange above equation.
Here,
Hence, the force on one plate can be accounted for by thinking of the electrical field between the plates as exerting a negative pressure equal to the energy density of the electric field.
Conclusion:
Therefore, the force on one plate can be accounted for by thinking of the electrical field between the plates as exerting a negative pressure equal to the energy density of the electric field.
(b)
Answer to Problem 32.60AP
Explanation of Solution
Given info: The current density of capacitor plates is
The formula to calculate the force on one capacitor plate is,
Here,
Substitute
The formula to calculate the force per area acting on one sheet is,
Substitute
Conclusion:
Therefore, the force per area acting on one sheet due to the magnetic field is
(c)
Answer to Problem 32.60AP
Explanation of Solution
The formula to calculate the magnetic field due to positive sheet is,
The formula to calculate the magnetic field due to positive sheet is,
The formula to calculate the net magnetic field between the sheets is,
Substitute
The formula to calculate the net magnetic field outside the sheets is,
Substitute
Conclusion:
Therefore, the net magnetic field between the sheets is
(d)
Answer to Problem 32.60AP
Explanation of Solution
The formula to calculate energy density in the magnetic field between the sheets is,
Substitute
Conclusion:
Therefore, the energy density in the magnetic field between the sheets is
(e)
To show: The force on one sheet can be accounted for by thinking of the magnetic field between the sheets as exerting a positive pressure equal to its energy density.
Answer to Problem 32.60AP
Explanation of Solution
Given info: The current density of capacitor plates is
From part (b) the force per area acting on one sheet due to the magnetic field is
From part (d) the energy density in the magnetic field between the sheets is
Both the energy density in the magnetic field and the force per area acting on one sheet due to the magnetic field are equal. Hence, the force on one sheet can be accounted for by thinking of the magnetic field between the sheets as exerting a positive pressure equal to its energy density.
Conclusion:
Therefore, the force on one sheet can be accounted for by thinking of the magnetic field between the sheets as exerting a positive pressure equal to its energy density.
Want to see more full solutions like this?
Chapter 32 Solutions
Physics for Scientists and Engineers (AP Edition)
- Question B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…arrow_forwardSECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]arrow_forwardPage 2 SECTION A Answer ALL questions in Section A [Expect to use one single-sided A4 page for each Section-A sub question.] Question A1 SPA6308 (2024) Consider Minkowski spacetime in Cartesian coordinates th = (t, x, y, z), such that ds² = dt² + dx² + dy² + dz². (a) Consider the vector with components V" = (1,-1,0,0). Determine V and V. V. (b) Consider now the coordinate system x' (u, v, y, z) such that u =t-x, v=t+x. [2 marks] Write down the line element, the metric, the Christoffel symbols and the Riemann curvature tensor in the new coordinates. [See the Appendix of this document.] [5 marks] (c) Determine V", that is, write the object in question A1.a in the coordinate system x'. Verify explicitly that V. V is invariant under the coordinate transformation. Question A2 [5 marks] Suppose that A, is a covector field, and consider the object Fv=AAμ. (a) Show explicitly that F is a tensor, that is, show that it transforms appropriately under a coordinate transformation. [5 marks] (b)…arrow_forward
- No chatgpt pls will upvote Iarrow_forwardHow would partial obstruction of an air intake port of an air-entrainment mask effect FiO2 and flow?arrow_forward14 Z In figure, a closed surface with q=b= 0.4m/ C = 0.6m if the left edge of the closed surface at position X=a, if E is non-uniform and is given by € = (3 + 2x²) ŷ N/C, calculate the (3+2x²) net electric flux leaving the closed surface.arrow_forward
- No chatgpt pls will upvotearrow_forwardsuggest a reason ultrasound cleaning is better than cleaning by hand?arrow_forwardCheckpoint 4 The figure shows four orientations of an electric di- pole in an external electric field. Rank the orienta- tions according to (a) the magnitude of the torque on the dipole and (b) the potential energy of the di- pole, greatest first. (1) (2) E (4)arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning