INDUSTRIAL MOTOR CONTROL
INDUSTRIAL MOTOR CONTROL
7th Edition
ISBN: 9780357670590
Author: Herman
Publisher: CENGAGE L
bartleby

Concept explainers

Question
Book Icon
Chapter 32, Problem 1RQ
To determine

The way of operation of DC motor to operate below its normal speed.

Expert Solution & Answer
Check Mark

Explanation of Solution

A device which is used to convert the electrical energy into mechanical energy is considered as the motor.

In DC motor, direct current (dc) is converted into the mechanical energy.

The expression for the speed of the DC motor is given by,

N=KVIaRaϕ

There are various types of method to control the speed namely flux per pole method, armature resistance method and supply voltage method.

The voltage control method is best suited to operate the DC motor below its normal speed. The applied voltage is controlled by controlling the applied voltage. The voltage is applied to the armature and field, then the motor operates its normal speed. So, the speed of the motor is controlled by varying the applied voltage.

Thus, the way of operation of DC motor to operate below its normal speed are ecplained.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
using the theorem of three moments, find all the reactions and supports
(An ellipsoidal trapping region for the Lorenz equations) Show that there is a certain ellipsoidal region E of the form rx2 + σy2 + σ(z − 2r)2 ≤ C such that all trajectories of the Lorenz equations eventually enter E and stay in there forever. For a much stiffer challenge, try to obtain the smallest possible value of C with this property.
A) In a factory, an s-type pitot tube was used to calculate the velocity of dry air for a point inside a stack. Calculate the velocity at that point (ft/sec) using following conditions: ● • • Pressure = 30.23 ± 0.01 in Hg (ambient) Pitot tube coefficient = 0.847 ± 0.03 Temperature = 122 ± 0.1 F (stack) Temperature = 71.2 ± 0.1 F (ambient) AP = 0.324 ± 0.008 in H2O (pitot tube) • AP = 0.891 ± 0.002 in H2O (stack) B) Find the dominant error(s) when determining precision for the problem. C) For part A, what is the precision in ft/sec for the velocity?
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Electrical Transformers and Rotating Machines
Mechanical Engineering
ISBN:9781305494817
Author:Stephen L. Herman
Publisher:Cengage Learning
Text book image
Understanding Motor Controls
Mechanical Engineering
ISBN:9781337798686
Author:Stephen L. Herman
Publisher:Delmar Cengage Learning
Text book image
Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning