EBK MUNSON, YOUNG AND OKIISHI'S FUNDAME
EBK MUNSON, YOUNG AND OKIISHI'S FUNDAME
8th Edition
ISBN: 9781119547990
Author: HOCHSTEIN
Publisher: JOHN WILEY+SONS INC.
bartleby

Videos

Question
Book Icon
Chapter 3.2, Problem 1P
To determine

Determine the fluid flow velocity in the duct.

Expert Solution & Answer
Check Mark

Answer to Problem 1P

The fluid flow velocity in the duct is u1=2(p2p1)ρ.

Explanation of Solution

The Bernoulli’s Equation can be used in many places not only in the pipe flow; the following are circumstances where the Bernoulli’s Equation shall be used in tanks as well as in open channels.

Circumference influenced by Bernoulli’s Equation.

  • Pitot tube.
  • Pitot static tube.
  • Venturimeter and orificemeter.
  • Flow over notches and weirs.

Pitot tube:

Pitot tube can be used to determine the velocity of fluid flow by connect with U-tube water gauge or with differential pressure gauge.

Sketch the part of Pitot tube of streamlines flow through the blunt body at uniform velocity as in Figure (1).

EBK MUNSON, YOUNG AND OKIISHI'S FUNDAME, Chapter 3.2, Problem 1P

Apply the Bernoulli’s Equation at duct fluid flow velocity of u1 and the pressure p1 to the velocity u2 at stagnation point 2 and the pressure p2.

  p1ρg+u122g+z1=p2ρg+u222g+z2        (I)

Here, the density fluid is ρ, the acceleration due to gravity is g and datum head with respect to center of tube at point 1 and point 2 is z.

Conclusion:

From the Figure (1), the datum head at point 1 and 2 will be same (z1=z2=z) and the velocity at stagnation point 2 equals to zero.

Substitute z for z1, z for z2 and 0 for u2 in Equation (I).

  p1ρg+u122g+z=p2ρg+02g+zp1ρg+u122g=p2ρgu122=p2ρp1ρu1=2(p2p1)ρ

Hence, the fluid flow velocity in the duct is u1=2(p2p1)ρ.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
03:35
Students have asked these similar questions
1. A 40 lb. force is applied at point E. There are pins at A, B, C, D, and F and a roller at A. a. Draw a FBD of member EFC showing all the known and unknown forces acting on it. b. Draw a FBD of member ABF showing all the known and unknown forces acting on it. c. Draw a FBD of member BCD showing all the known and unknown forces acting on it. d. Draw a FBD of the entire assembly ADE showing all the known and unknown forces acting on it. e. Determine the reactions at A and D. f. Determine the magnitude of the pin reaction at C. 40 lbs. B A 6 in. 4 in. D F -5 in.4 in 4.
A crude oil of specific gravity0.85 flows upward at a volumetric rate of flow of 70litres per second through a vertical venturimeter,with an inlet diameter of 250 mm and a throat diameter of 150mm. The coefficient of discharge of venturimeter is 0.96. The vertical differences betwecen the pressure toppings is 350mm. i) Draw a well labeled diagram to represent the above in formation  i) If the two pressure gauges are connected at the tapings such that they are positioned at the levels of their corresponding tapping points, determine the difference of readings in N/CM² of the two pressure gauges   ii) If a mercury differential manometer is connected in place of pressure gauges, to the tappings such that the connecting tube up to mercury are filled with oil determine the difference in the level of mercury column.
Can you solve it analytically using laplace transforms and with Matlab code as well please. Thank You

Chapter 3 Solutions

EBK MUNSON, YOUNG AND OKIISHI'S FUNDAME

Ch. 3.3 - Water flows around the vertical two-dimensional...Ch. 3.3 - Water in a container and air in a tornado flow in...Ch. 3.3 - Prob. 15PCh. 3.5 - At a given point on a horizontal streamline in...Ch. 3.5 - A drop of water in a zero-g environment (as in the...Ch. 3.5 - When an airplane is flying 200 mph at 5000-ft...Ch. 3.5 - Air flows over the airfoil shown in Fig. P3.20....Ch. 3.5 - Some animals have learned to take advantage of the...Ch. 3.5 - Estimate the pressure on your hand when you hold...Ch. 3.5 - 2013 Indianapolis 500 champion Tony Kanaan holds...Ch. 3.5 - What is the minimum height for an oil (SG = 0.75)...Ch. 3.5 - Prob. 25PCh. 3.5 - A Bourdon-type pressure gage is used to measure...Ch. 3.5 - Estimate the force of a hurricane strength wind...Ch. 3.5 - A 40-mph wind blowing past your house speeds up as...Ch. 3.5 - Prob. 29PCh. 3.6 - Prob. 30PCh. 3.6 - Estimate the pressure needed at the pumper truck...Ch. 3.6 - The tank shown in Fig. P3.32 contains air at...Ch. 3.6 - Water flows from the faucet on the first floor of...Ch. 3.6 - Prob. 34PCh. 3.6 - Prob. 35PCh. 3.6 - Streams of water from two tanks impinge upon each...Ch. 3.6 - Several holes are punched into a tin can as shown...Ch. 3.6 - Water flows from a pressurized tank, through a...Ch. 3.6 - Prob. 39PCh. 3.6 - Prob. 41PCh. 3.6 - Figure P3.42 shows a tube for siphoning water from...Ch. 3.6 - For the pipe enlargement shown in Fig. P3.43, the...Ch. 3.6 - A fire hose nozzle has a diameter of in. According...Ch. 3.6 - Water flowing from the 0.75-in.-diameter outlet...Ch. 3.6 - Prob. 46PCh. 3.6 - Prob. 47PCh. 3.6 - Prob. 48PCh. 3.6 - The pressure and average velocity at point A in...Ch. 3.6 - Water (assumed inviscid and incompressible) flows...Ch. 3.6 - Prob. 51PCh. 3.6 - Prob. 52PCh. 3.6 - Prob. 53PCh. 3.6 - Prob. 54PCh. 3.6 - Prob. 55PCh. 3.6 - Prob. 56PCh. 3.6 - Water (assumed frictionless and incompressible)...Ch. 3.6 - Prob. 58PCh. 3.6 - Water flows through the pipe contraction shown in...Ch. 3.6 - Prob. 60PCh. 3.6 - Prob. 61PCh. 3.6 - Prob. 62PCh. 3.6 - Prob. 63PCh. 3.6 - Prob. 64PCh. 3.6 - The circular stream of water from a faucet is...Ch. 3.6 - Water is siphoned from the tank shown in Fig....Ch. 3.6 - Prob. 67PCh. 3.6 - Prob. 68PCh. 3.6 - Water is siphoned from the tank shown in Fig....Ch. 3.6 - Prob. 70PCh. 3.6 - Water exits a pipe as a free jet and flows to a...Ch. 3.6 - Water flows steadily from a large, closed tank as...Ch. 3.6 - Prob. 73PCh. 3.6 - Prob. 74PCh. 3.6 - Prob. 75PCh. 3.6 - Prob. 76PCh. 3.6 - Prob. 77PCh. 3.6 - Prob. 78PCh. 3.6 - Prob. 79PCh. 3.6 - Air is drawn into a small open-circuit wing tunnel...Ch. 3.6 - Prob. 81PCh. 3.6 - Water flows steadily from the large open tank...Ch. 3.6 - Prob. 83PCh. 3.6 - Prob. 84PCh. 3.6 - Prob. 85PCh. 3.6 - Prob. 86PCh. 3.6 - Prob. 87PCh. 3.6 - Prob. 88PCh. 3.6 - Prob. 89PCh. 3.6 - Prob. 90PCh. 3.6 - Prob. 91PCh. 3.6 - Prob. 92PCh. 3.6 - Prob. 93PCh. 3.6 - Prob. 94PCh. 3.6 - Prob. 95PCh. 3.6 - Prob. 96PCh. 3.6 - Prob. 97PCh. 3.6 - Prob. 98PCh. 3.6 - Prob. 99PCh. 3.6 - Determine the flowrate through the submerged...Ch. 3.6 - The water clock (clepsydra) shown in Fig. P3.101...Ch. 3.6 - Prob. 102PCh. 3.6 - Prob. 105PCh. 3.6 - Prob. 106PCh. 3.6 - Prob. 107PCh. 3.6 - Prob. 109PCh. 3.6 - Prob. 110PCh. 3.6 - Water flows through the branching pipe shown in...Ch. 3.6 - Prob. 112PCh. 3.6 - Prob. 113PCh. 3.6 - Prob. 114PCh. 3.6 - Prob. 115PCh. 3.6 - Prob. 116PCh. 3.6 - Prob. 117PCh. 3.6 - Prob. 118PCh. 3.6 - Prob. 119PCh. 3.6 - Prob. 120PCh. 3.6 - Prob. 121PCh. 3.6 - Prob. 122PCh. 3.6 - Prob. 123PCh. 3.6 - Water flows in a rectangular channel that is 2.0 m...Ch. 3.6 - Prob. 125PCh. 3.6 - A Venturi meter with a minimum diameter of 3 in....Ch. 3.6 - Prob. 127PCh. 3.6 - Prob. 128PCh. 3.6 - What diameter orifice hole, d, is needed if under...Ch. 3.6 - A weir (see Video V10.13) of trapezoidal cross...Ch. 3.6 - Prob. 131PCh. 3.6 - Water flows under the inclined sluice gate shown...Ch. 3.7 - Water flows in a vertical pipe of 0.15-m diameter...Ch. 3.7 - Prob. 134PCh. 3.7 - Draw the energy line and hydraulic grade line for...Ch. 3.8 - Prob. 137PCh. 3.8 - Prob. 138P
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Physics 33 - Fluid Statics (1 of 10) Pressure in a Fluid; Author: Michel van Biezen;https://www.youtube.com/watch?v=mzjlAla3H1Q;License: Standard YouTube License, CC-BY