OPENINTRO:STATISTICS
OPENINTRO:STATISTICS
4th Edition
ISBN: 9781943450077
Author: OPENINTRO
Publisher: amazon.com
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 3.2, Problem 13E

a.

To determine

Delineate whether P(A and B) can be obtained if P(A) and P(B) are known.

a.

Expert Solution
Check Mark

Answer to Problem 13E

No, it can be obtained only if A and B are independent.

Explanation of Solution

From the given information, P(A)=0.3, P(B)=0.7.

General multiplication rule:

If A and B are two events, then

P(A and B)=P(A|B)×P(B)

Using the given information , P(A and B) cannot be obtained because the value of P(A|B) is not known.

If A and B are independent events, then P(A and B)=P(A)×P(B).

Thus, P(A and B) can be obtained only if A and B are independent.

b.

To determine

If A and B are independent events, then find P(A and B).

If A and B are independent events, then find P(A or B).

If A and B are independent events, then find P(A|B).

b.

Expert Solution
Check Mark

Answer to Problem 13E

P(A and B)=0.21_P(A or B)=0.79_P(A|B)=0.3_

Explanation of Solution

From the given information, A and B are independent events. P(A)=0.3, P(B)=0.7

Assuming A and B are independent events, then using multiplication rule for independent process:

P(A and B)=P(A)×P(B)=0.3×0.7=0.21

Thus, if A and B are independent events, then P(A and B)=0.21.

Assuming A and B are independent events, then using the general addition rule:

P(AorB)=P(A)+P(B)P(AB)=0.3+0.7P(A)×P(B)=1(0.3×0.7)=10.21=0.79

Thus, if A and B are independent events, then P(AorB)=0.79.

Assuming A and B are independent events, then using conditional probability:

P(A|B)=P(A and B)P(B)=P(A)×P(B)P(B)=P(A)=0.3

Thus, if A and B are independent events, then P(A|B)=0.3.

c.

To determine

Check whether the random variables A and B are independent if P(A and B)=0.1.

c.

Expert Solution
Check Mark

Answer to Problem 13E

A and B are not independent events.

Explanation of Solution

Given information, P(A)=0.3,P(B)=0.7 and P(A and B)=0.1.

Multiplication rule for independent process:

P(A and B)=P(A)×P(B)=0.3×0.7=0.21

Given that P(A and B)=0.1.

Here,

0.10.21P(A and B)=P(A)×P(B)

Thus, A and B are not independent events.

d.

To determine

Find P(A|B).

d.

Expert Solution
Check Mark

Answer to Problem 13E

P(A|B)=0.143

Explanation of Solution

Given information, P(A)=0.3,P(B)=0.7 and P(A and B)=0.1.

Conditional probability:

P(A|B)=P(A and B)P(B)=0.10.7=0.142850.143

Thus, P(A|B)=0.143

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
This problem is based on the fundamental option pricing formula for the continuous-time model developed in class, namely the value at time 0 of an option with maturity T and payoff F is given by: We consider the two options below: Fo= -rT = e Eq[F]. 1 A. An option with which you must buy a share of stock at expiration T = 1 for strike price K = So. B. An option with which you must buy a share of stock at expiration T = 1 for strike price K given by T K = T St dt. (Note that both options can have negative payoffs.) We use the continuous-time Black- Scholes model to price these options. Assume that the interest rate on the money market is r. (a) Using the fundamental option pricing formula, find the price of option A. (Hint: use the martingale properties developed in the lectures for the stock price process in order to calculate the expectations.) (b) Using the fundamental option pricing formula, find the price of option B. (c) Assuming the interest rate is very small (r ~0), use Taylor…
Discuss and explain in the picture
Bob and Teresa each collect their own samples to test the same hypothesis. Bob’s p-value turns out to be 0.05, and Teresa’s turns out to be 0.01. Why don’t Bob and Teresa get the same p-values? Who has stronger evidence against the null hypothesis: Bob or Teresa?

Chapter 3 Solutions

OPENINTRO:STATISTICS

Ch. 3.1 - Prob. 16GPCh. 3.1 - Prob. 17GPCh. 3.1 - Prob. 18GPCh. 3.1 - Prob. 19GPCh. 3.1 - Prob. 20GPCh. 3.1 - Prob. 22GPCh. 3.1 - Prob. 23GPCh. 3.1 - Prob. 24GPCh. 3.1 - Prob. 1ECh. 3.1 - Prob. 2ECh. 3.1 - Prob. 3ECh. 3.1 - Prob. 4ECh. 3.1 - Prob. 5ECh. 3.1 - Prob. 6ECh. 3.1 - Prob. 7ECh. 3.1 - Prob. 8ECh. 3.1 - Prob. 9ECh. 3.1 - Prob. 10ECh. 3.1 - Prob. 11ECh. 3.1 - Prob. 12ECh. 3.2 - Prob. 28GPCh. 3.2 - Prob. 29GPCh. 3.2 - Prob. 30GPCh. 3.2 - Prob. 31GPCh. 3.2 - Prob. 32GPCh. 3.2 - Prob. 33GPCh. 3.2 - Prob. 35GPCh. 3.2 - Prob. 36GPCh. 3.2 - Prob. 37GPCh. 3.2 - Prob. 38GPCh. 3.2 - Prob. 39GPCh. 3.2 - Prob. 41GPCh. 3.2 - Prob. 43GPCh. 3.2 - Prob. 45GPCh. 3.2 - Prob. 46GPCh. 3.2 - Prob. 13ECh. 3.2 - Prob. 14ECh. 3.2 - Prob. 15ECh. 3.2 - Prob. 16ECh. 3.2 - Prob. 17ECh. 3.2 - Prob. 18ECh. 3.2 - Prob. 19ECh. 3.2 - Prob. 20ECh. 3.2 - Prob. 21ECh. 3.2 - Prob. 22ECh. 3.3 - Prob. 49GPCh. 3.3 - Prob. 51GPCh. 3.3 - Prob. 52GPCh. 3.3 - Prob. 53GPCh. 3.3 - Prob. 23ECh. 3.3 - Prob. 24ECh. 3.3 - Prob. 25ECh. 3.3 - Prob. 26ECh. 3.3 - Prob. 27ECh. 3.3 - Prob. 28ECh. 3.4 - Prob. 55GPCh. 3.4 - Prob. 59GPCh. 3.4 - Prob. 62GPCh. 3.4 - Prob. 63GPCh. 3.4 - Prob. 64GPCh. 3.4 - Prob. 66GPCh. 3.4 - Prob. 67GPCh. 3.4 - Prob. 69GPCh. 3.4 - Prob. 70GPCh. 3.4 - Prob. 29ECh. 3.4 - Prob. 30ECh. 3.4 - Prob. 31ECh. 3.4 - Prob. 32ECh. 3.4 - Prob. 33ECh. 3.4 - Prob. 34ECh. 3.4 - Prob. 35ECh. 3.4 - Prob. 36ECh. 3.5 - Prob. 73GPCh. 3.5 - Prob. 75GPCh. 3.5 - Prob. 37ECh. 3.5 - Prob. 38ECh. 3 - Prob. 39CECh. 3 - Prob. 40CECh. 3 - Prob. 41CECh. 3 - Prob. 42CECh. 3 - Prob. 43CECh. 3 - Prob. 44CECh. 3 - Prob. 45CECh. 3 - Prob. 46CECh. 3 - Prob. 47CE
Knowledge Booster
Background pattern image
Statistics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Text book image
College Algebra
Algebra
ISBN:9781305115545
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Text book image
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Text book image
College Algebra
Algebra
ISBN:9781337282291
Author:Ron Larson
Publisher:Cengage Learning
Mod-01 Lec-01 Discrete probability distributions (Part 1); Author: nptelhrd;https://www.youtube.com/watch?v=6x1pL9Yov1k;License: Standard YouTube License, CC-BY
Discrete Probability Distributions; Author: Learn Something;https://www.youtube.com/watch?v=m9U4UelWLFs;License: Standard YouTube License, CC-BY
Probability Distribution Functions (PMF, PDF, CDF); Author: zedstatistics;https://www.youtube.com/watch?v=YXLVjCKVP7U;License: Standard YouTube License, CC-BY
Discrete Distributions: Binomial, Poisson and Hypergeometric | Statistics for Data Science; Author: Dr. Bharatendra Rai;https://www.youtube.com/watch?v=lHhyy4JMigg;License: Standard Youtube License