Bisection Method for Approximating Zeros of a Function f We begin with two consecutive integers, a and a + 1 , such that f ( a ) and f ( a + 1 ) are of opposite sign. Evaluate f at the midpoint m 1 of a and a + 1 . If f ( m 1 ) = 0 . then m 1 is the zero of f , and we are finished. Otherwise, f ( m 1 ) is of opposite sign to either f ( a ) or f ( a + 1 ) . Suppose that it is f ( a ) and f ( m 1 ) that are of opposite sign. Now evaluate f at the midpoint m 2 of a and m 1 . Repeat this process until the desired degree of accuracy is obtained. Note that each iteration places the zero in an interval whose length is half that of the previous interval. Use the bisection method to approximate the zero of f ( x ) = 8 x 4 − 2 x 2 + 5 x − 1 in the interval [ 0 , 1 ] correct to three decimal places. Verify your result using a graphing utility. [ Hint: The process ends when both endpoints agree to the desired number of decimal places.]
Bisection Method for Approximating Zeros of a Function f We begin with two consecutive integers, a and a + 1 , such that f ( a ) and f ( a + 1 ) are of opposite sign. Evaluate f at the midpoint m 1 of a and a + 1 . If f ( m 1 ) = 0 . then m 1 is the zero of f , and we are finished. Otherwise, f ( m 1 ) is of opposite sign to either f ( a ) or f ( a + 1 ) . Suppose that it is f ( a ) and f ( m 1 ) that are of opposite sign. Now evaluate f at the midpoint m 2 of a and m 1 . Repeat this process until the desired degree of accuracy is obtained. Note that each iteration places the zero in an interval whose length is half that of the previous interval. Use the bisection method to approximate the zero of f ( x ) = 8 x 4 − 2 x 2 + 5 x − 1 in the interval [ 0 , 1 ] correct to three decimal places. Verify your result using a graphing utility. [ Hint: The process ends when both endpoints agree to the desired number of decimal places.]
Solution Summary: The author explains the bisection method to approximate the zero of f ( x ) = 8 2 / 2 + 5 in the interval.
Bisection Method for Approximating Zeros of a Function
We begin with two consecutive integers,
and
, such that
and
are of opposite sign. Evaluate
at the midpoint
of
and
. If
. then
is the zero of
, and we are finished. Otherwise,
is of opposite sign to either
or
. Suppose that it is
and
that are of opposite sign. Now evaluate
at the midpoint
of
and
. Repeat this process until the desired degree of accuracy is obtained. Note that each iteration places the zero in an interval whose length is half that of the previous interval. Use the bisection method to approximate the zero of
in the interval
correct to three decimal places. Verify your result using a graphing utility.
[Hint: The process ends when both endpoints agree to the desired number of decimal places.]
Force with 800 N and 400 N are acting on a machine part at 30° and 60°, respectively with the positive x axis
Find the accumulated amount A, if the principal P is invested at an interest rate of r per year for t years. (Round your answer to the nearest cent.)
P = $13,000, r = 6%, t = 10, compounded quarterly
A = $ 31902
Need Help?
Read It
Watch It
Viewing Saved Work Revert to Last Response
SUBMIT ANSWER
O/6.66 Points]
DETAILS
MY NOTES
TANAPCALC10 5.3.003.
EVIOUS ANSWERS
ASK YOUR TEACHER
PRACTICE ANOTHER
Find the accumulated amount A, if the principal P is invested at an interest rate of r per year for t years. (Round your answer to the nearest cent.)
P = $140,000, r = 8%, t = 8, compounded monthly
A = $259130.20 X
Need Help?
Read It
Watch It
Find the present value of $20,000 due in 3 years at the given rate of interest. (Round your answers to the nearest cent.)
(a) 2%/year compounded monthly
(b) 5%/year compounded daily
$
Need Help?
Read It
Watch It
SUBMIT ANSWER
[-/6.66 Points] DETAILS
MY NOTES
TANAPCALC10 5.3.009.
ASK YOUR TEACHER
PRACTICE ANC
Find the accumulated amount after 3 years if $4000 is invested at 3%/year compounded continuously. (Round your answer to the nearest cent.)
Need Help?
Read It
Watch It
Chapter 3 Solutions
Pearson eText for Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry -- Instant Access (Pearson+)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.