
Mathematics: A Discrete Introduction
3rd Edition
ISBN: 9780840049421
Author: Edward A. Scheinerman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3.17, Problem 17.27E
How many Social Security numbers (see Exercise 8.12) have their nine digits in strictly increasing order?
The following series of problems introduce the concept of multinomial coefficients.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Determine whether each function is an injection and determine whether each is a surjection.The notation Z_(n) refers to the set {0,1,2,...,n-1}. For example, Z_(4)={0,1,2,3}. f: Z_(6) -> Z_(6) defined by f(x)=x^(2)+4(mod6). g: Z_(5) -> Z_(5) defined by g(x)=x^(2)-11(mod5). h: Z*Z -> Z defined by h(x,y)=x+2y. j: R-{3} -> R defined by j(x)=(4x)/(x-3).
Determine whether each function is an injection and determine whether each is a surjection.
Let A
=
{a, b, c, d}, B = {a,b,c}, and C = {s, t, u,v}. Draw an arrow diagram of a function
for each of the following descriptions. If no such function exists, briefly explain why.
(a) A function f : AC whose range is the set C.
(b) A function g: BC whose range is the set C.
(c) A function g: BC that is injective.
(d) A function j : A → C that is not bijective.
Chapter 3 Solutions
Mathematics: A Discrete Introduction
Ch. 3.14 - Write the following relations on the set 1,2,3,4,5...Ch. 3.14 - Prob. 14.2ECh. 3.14 - Prob. 14.3ECh. 3.14 - For each of the following relations on the set of...Ch. 3.14 - Prob. 14.5ECh. 3.14 - Prob. 14.6ECh. 3.14 - Prob. 14.7ECh. 3.14 - Prob. 14.8ECh. 3.14 - Prob. 14.9ECh. 3.14 - Prob. 14.10E
Ch. 3.14 - Prob. 14.11ECh. 3.14 - Prob. 14.12ECh. 3.14 - Prob. 14.13ECh. 3.14 - Prob. 14.14ECh. 3.14 - Prove: A relation R on a set A is antisymmetric if...Ch. 3.14 - Give an example of a relation on a set that is...Ch. 3.14 - Drawing pictures of relations. Pictures of...Ch. 3.15 - Prob. 15.1ECh. 3.15 - Prob. 15.2ECh. 3.15 - Prob. 15.3ECh. 3.15 - Prob. 15.4ECh. 3.15 - Prove: If a is an integer, then aa (mod 2).Ch. 3.15 - Prob. 15.6ECh. 3.15 - For each equivalence relation below, find the...Ch. 3.15 - Prob. 15.8ECh. 3.15 - Prob. 15.9ECh. 3.15 - Prob. 15.10ECh. 3.15 - Suppose R is an equivalence relation on a set A...Ch. 3.15 - Prob. 15.12ECh. 3.15 - Prob. 15.13ECh. 3.15 - Prob. 15.14ECh. 3.15 - Prob. 15.15ECh. 3.15 - Prob. 15.16ECh. 3.15 - Prob. 15.17ECh. 3.16 - Prob. 16.1ECh. 3.16 - How many different anagrams (including nonsensical...Ch. 3.16 - Prob. 16.3ECh. 3.16 - Prob. 16.4ECh. 3.16 - Prob. 16.5ECh. 3.16 - Prob. 16.6ECh. 3.16 - Prob. 16.7ECh. 3.16 - Prob. 16.8ECh. 3.16 - Prob. 16.9ECh. 3.16 - Prob. 16.10ECh. 3.16 - Prob. 16.11ECh. 3.16 - Prob. 16.12ECh. 3.16 - Prob. 16.13ECh. 3.16 - Prob. 16.14ECh. 3.16 - How many partitions, with exactly two parts, can...Ch. 3.16 - Prob. 16.16ECh. 3.16 - Prob. 16.17ECh. 3.16 - Prob. 16.18ECh. 3.16 - Prob. 16.19ECh. 3.16 - Prob. 16.20ECh. 3.17 - Prob. 17.1ECh. 3.17 - Prob. 17.2ECh. 3.17 - Prob. 17.3ECh. 3.17 - Prob. 17.4ECh. 3.17 - Prob. 17.5ECh. 3.17 - Prob. 17.6ECh. 3.17 - Prob. 17.7ECh. 3.17 - Prob. 17.8ECh. 3.17 - Prob. 17.9ECh. 3.17 - Prob. 17.10ECh. 3.17 - Prob. 17.11ECh. 3.17 - Prob. 17.12ECh. 3.17 - Prob. 17.13ECh. 3.17 - Prob. 17.14ECh. 3.17 - Prob. 17.15ECh. 3.17 - Consider the following formula: kkn=nk1n1. Give...Ch. 3.17 - Prob. 17.17ECh. 3.17 - Prob. 17.18ECh. 3.17 - Prob. 17.19ECh. 3.17 - Prob. 17.20ECh. 3.17 - Prob. 17.21ECh. 3.17 - Prob. 17.22ECh. 3.17 - Prob. 17.23ECh. 3.17 - Prob. 17.24ECh. 3.17 - Prob. 17.25ECh. 3.17 - Prove: 0nnn+1nn1n+2nn2n++n1n1n+nn0n=n2n.Ch. 3.17 - How many Social Security numbers (see Exercise...Ch. 3.17 - Prob. 17.28ECh. 3.17 - Prob. 17.29ECh. 3.17 - Prob. 17.30ECh. 3.17 - Prob. 17.31ECh. 3.17 - Prob. 17.32ECh. 3.17 - Prob. 17.33ECh. 3.17 - Prob. 17.34ECh. 3.17 - Prob. 17.35ECh. 3.17 - Prob. 17.36ECh. 3.17 - Prob. 17.37ECh. 3.18 - Prob. 18.1ECh. 3.18 - Prob. 18.2ECh. 3.18 - Prob. 18.3ECh. 3.18 - Prob. 18.4ECh. 3.18 - Prob. 18.5ECh. 3.18 - Prob. 18.6ECh. 3.18 - Prob. 18.7ECh. 3.18 - Prob. 18.8ECh. 3.18 - Prob. 18.9ECh. 3.18 - Prob. 18.10ECh. 3.18 - Prob. 18.11ECh. 3.18 - Prob. 18.12ECh. 3.18 - Prob. 18.13ECh. 3.18 - Prob. 18.14ECh. 3.18 - Prob. 18.15ECh. 3.18 - Prob. 18.16ECh. 3.18 - Prob. 18.17ECh. 3.18 - Prob. 18.18ECh. 3.18 - Prob. 18.19ECh. 3.19 - Prob. 19.1ECh. 3.19 - Prob. 19.2ECh. 3.19 - Prob. 19.3ECh. 3.19 - Prob. 19.4ECh. 3.19 - How many five-letter words can you make in which...Ch. 3.19 - This problem asks you to give two proofs for...Ch. 3.19 - Prob. 19.7ECh. 3.19 - Prob. 19.8ECh. 3.19 - Prob. 19.9ECh. 3.19 - Prob. 19.10ECh. 3.19 - Prob. 19.11ECh. 3.19 - Prob. 19.12ECh. 3 - Prob. 1STCh. 3 - Prob. 2STCh. 3 - Prob. 3STCh. 3 - Prob. 4STCh. 3 - Prob. 5STCh. 3 - Prob. 6STCh. 3 - Prob. 7STCh. 3 - Prob. 8STCh. 3 - Prob. 9STCh. 3 - Prob. 10STCh. 3 - Prob. 11STCh. 3 - Prob. 12STCh. 3 - Prob. 13STCh. 3 - Prob. 14STCh. 3 - Prob. 15STCh. 3 - Prob. 16STCh. 3 - Prob. 17STCh. 3 - Prob. 18STCh. 3 - Prob. 19STCh. 3 - Prob. 20STCh. 3 - Prob. 21STCh. 3 - Prob. 22ST
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Let f:R->R be defined by f(x)=x^(3)+5.(a) Determine if f is injective. why?(b) Determine if f is surjective. why?(c) Based upon (a) and (b), is f bijective? why?arrow_forwardLet f:R->R be defined by f(x)=x^(3)+5.(a) Determine if f is injective.(b) Determine if f is surjective. (c) Based upon (a) and (b), is f bijective?arrow_forwardPlease as many detarrow_forward
- 8–23. Sketching vector fields Sketch the following vector fieldsarrow_forward25-30. Normal and tangential components For the vector field F and curve C, complete the following: a. Determine the points (if any) along the curve C at which the vector field F is tangent to C. b. Determine the points (if any) along the curve C at which the vector field F is normal to C. c. Sketch C and a few representative vectors of F on C. 25. F = (2½³, 0); c = {(x, y); y − x² = 1} 26. F = x (23 - 212) ; C = {(x, y); y = x² = 1}) , 2 27. F(x, y); C = {(x, y): x² + y² = 4} 28. F = (y, x); C = {(x, y): x² + y² = 1} 29. F = (x, y); C = 30. F = (y, x); C = {(x, y): x = 1} {(x, y): x² + y² = 1}arrow_forward٣/١ B msl kd 180 Ka, Sin (1) I sin () sin(30) Sin (30) اذا ميريد شرح الكتب بس 0 بالفراغ 3) Cos (30) 0.866 4) Rotating 5) Synchronous speed, 120 x 50 G 5005 1000 s = 1000-950 Copper bosses 5kW Rotor input 5 0.05 : loo kw 6) 1 /0001 ined sove in peaper I need a detailed solution on paper please وه اذا ميريد شرح الكتب فقط ١٥٠ DC 7) rotor a ' (y+xlny + xe*)dx + (xsiny + xlnx + dy = 0. Q1// Find the solution of: ( 357arrow_forward
- ۳/۱ R₂ = X2 2) slots per pole per phase 3/31 B. 180 msl Kas Sin (I) 1sin() sin(30) Sin (30) اذا ميريد شرح الكتب بس 0 بالفراغ 3) Cos (30): 0.866 4) Rotating 5) Synchronous speeds 120×50 looo G 1000-950 1000 Copper losses 5kw Rotor input 5 loo kw 0.05 6) 1 اذا ميريد شرح الكتب فقط look 7) rotor DC ined sove in peaper I need a detailed solution on paper please 0 64 Find the general solution of the following equations: QI//y(4)-16y= 0. Find the general solution of the following equations: Q2ll yll-4y/ +13y=esinx.arrow_forwardR₂ = X2 2) slots per pole per phase = 3/31 B-180 60 msl kd Kas Sin () 2 I sin (6) sin(30) Sin (30) اذا مريد شرح الكتب بس 0 بالفراغ 3 Cos (30) 0.866 4) Rotating ined sove in peaper 5) Synchronous speed s 120×50 6 s = 1000-950 1000 Copper losses 5kw Rotor input 5 0.05 6) 1 loo kw اذا ميريد شرح الكتب فقط Look 7) rotov DC I need a detailed solution on paper please 0 64 Solve the following equations: 0 Q1// Find the solution of: ( y • with y(0) = 1. dx x²+y²arrow_forwardR₂ = X2 2) slots per pole per phase = 3/3 1 B-180-60 msl Ka Sin (1) Isin () sin(30) Sin (30) اذا ميريد شرح الكتب بس 0 بالفراغ 3) Cos (30) 0.866 4) Rotating 5) Synchronous speed, 120 x 50 s = 1000-950 1000 Copper losses 5kw Rotor input 5 6) 1 0.05 G 50105 loo kw اذا ميريد شرح الكتب فقط look 7) rotov DC ined sove in peaper I need a detailed solution on paper please 064 2- A hot ball (D=15 cm ) is cooled by forced air T.-30°C, the rate of heat transfer from the ball is 460.86 W. Take for the air -0.025 Wim °C and Nu=144.89, find the ball surface temperature a) 300 °C 16 b) 327 °C c) 376 °C d) None か = 750 01arrow_forward
- Answer questions 8.3.3 and 8.3.4 respectively 8.3.4 .WP An article in Medicine and Science in Sports and Exercise [“Electrostimulation Training Effects on the Physical Performance of Ice Hockey Players” (2005, Vol. 37, pp. 455–460)] considered the use of electromyostimulation (EMS) as a method to train healthy skeletal muscle. EMS sessions consisted of 30 contractions (4-second duration, 85 Hz) and were carried out three times per week for 3 weeks on 17 ice hockey players. The 10-meter skating performance test showed a standard deviation of 0.09 seconds. Construct a 95% confidence interval of the standard deviation of the skating performance test.arrow_forward8.6.7 Consider the tire-testing data in Exercise 8.2.3. Compute a 95% tolerance interval on the life of the tires that has confidence level 95%. Compare the length of the tolerance interval with the length of the 95% CI on the population mean. Which interval is shorter? Discuss the difference in interpretation of these two intervals.arrow_forward8.6.2 Consider the natural frequency of beams described in Exercise 8.2.8. Compute a 90% prediction interval on the diameter of the natural frequency of the next beam of this type that will be tested. Compare the length of the prediction interval with the length of the 90% CI on the population mean. 8.6.3 Consider the television tube brightness test described in Exercise 8.2.7. Compute a 99% prediction interval on the brightness of the next tube tested. Compare the length of the prediction interval with the length of the 99% CI on the population mean.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal Littell
- Big Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin HarcourtCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning

Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill

College Algebra
Algebra
ISBN:9781305115545
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning

Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell

Big Ideas Math A Bridge To Success Algebra 1: Stu...
Algebra
ISBN:9781680331141
Author:HOUGHTON MIFFLIN HARCOURT
Publisher:Houghton Mifflin Harcourt

College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning

Mod-01 Lec-01 Discrete probability distributions (Part 1); Author: nptelhrd;https://www.youtube.com/watch?v=6x1pL9Yov1k;License: Standard YouTube License, CC-BY
Discrete Probability Distributions; Author: Learn Something;https://www.youtube.com/watch?v=m9U4UelWLFs;License: Standard YouTube License, CC-BY
Probability Distribution Functions (PMF, PDF, CDF); Author: zedstatistics;https://www.youtube.com/watch?v=YXLVjCKVP7U;License: Standard YouTube License, CC-BY
Discrete Distributions: Binomial, Poisson and Hypergeometric | Statistics for Data Science; Author: Dr. Bharatendra Rai;https://www.youtube.com/watch?v=lHhyy4JMigg;License: Standard Youtube License