(a)
Interpretation:
Given set of compounds has to be ranked from most soluble to least soluble in water.
Concept introduction:
Solubility:
The general rule that in solubility is like dissolve like, in other words, polar compounds dissolve in polar solvents, and non-polar compounds dissolve in non-polar solvents.
Polarity:
The polar solvent such as a water has partial charges that can interact with the partial charges on a polar compound. The negative poles of the solvent molecule surround the positive pole of the polar compound and the positive pole of polar compound. The clustering of the solvent molecules around the polar molecules separates them from each other, which is make them dissolve.
Non-polarity:
The non-polar compounds have no charge; polar solvents are not attached to them. For a non-polar molecule to dissolve in polar solvent, the non-polar molecule would have to push the water molecules apart, disrupting their hydrogen bonding.
(b)
Interpretation:
Given set of compounds has to be ranked from most soluble to least soluble in water.
Concept introduction:
Solubility:
The general rule that in solubility is like dissolve like, in other words, polar compounds dissolve in polar solvents, and non-polar compounds dissolve in non-polar solvents.
Polarity:
The polar solvent such as a water has partial charges that can interact with the partial charges on a polar compound. The negative poles of the solvent molecule surround the positive pole of the polar compound and the positive pole of polar compound. The clustering of the solvent molecules around the polar molecules separates them from each other, which is make them dissolve.
Non-polarity:
The non-polar compounds have no charge; polar solvents are not attached to them. For a non-polar molecule to dissolve in polar solvent, the non-polar molecule would have to push the water molecules apart, disrupting their hydrogen bonding.
Trending nowThis is a popular solution!
Chapter 3 Solutions
Organic Chemistry Study Guide and Solutions Manual, Books a la Carte Edition (8th Edition)
- Zeroth Order Reaction In a certain experiment the decomposition of hydrogen iodide on finely divided gold is zeroth order with respect to HI. 2HI(g) Au H2(g) + 12(9) Rate = -d[HI]/dt k = 2.00x104 mol L-1 s-1 If the experiment has an initial HI concentration of 0.460 mol/L, what is the concentration of HI after 28.0 minutes? 1 pts Submit Answer Tries 0/5 How long will it take for all of the HI to decompose? 1 pts Submit Answer Tries 0/5 What is the rate of formation of H2 16.0 minutes after the reaction is initiated? 1 pts Submit Answer Tries 0/5arrow_forwardangelarodriguezmunoz149@gmail.com Hi i need help with this question i am not sure what the right answers are.arrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- Don't used hand raitingarrow_forwardDon't used Ai solutionarrow_forwardSaved v Question: I've done both of the graphs and generated an equation from excel, I just need help explaining A-B. Below is just the information I used to get the graphs obtain the graph please help. Prepare two graphs, the first with the percent transmission on the vertical axis and concentration on the horizontal axis and the second with absorption on the vertical axis and concentration on the horizontal axis. Solution # Unknown Concentration (mol/L) Transmittance Absorption 9.88x101 635 0.17 1.98x101 47% 0.33 2.95x101 31% 0.51 3.95x10 21% 0.68 4.94x10 14% 24% 0.85 0.62 A.) Give an equation that relates either the % transmission or the absorption to the concentration. Explain how you arrived at your equation. B.) What is the relationship between the percent transmission and the absorption? C.) Determine the concentration of the ironlll) salicylate in the unknown directly from the graph and from the best fit trend-line (least squares analysis) of the graph that yielded a straight…arrow_forward
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningOrganic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning