Electric Motor Control
10th Edition
ISBN: 9781133702818
Author: Herman
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 31, Problem 8SQ
At what speed can a four-pole, 240-volt, 5-hp, 50-hertz motor operate?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Find Rth at the open terminals using 1V test source.
How many atoms are there in a simple cubic unit cell? in a bcc unit cell? in a fcc unit cell? in the
unit cell characterizing the diamond lattice?
Consider the homogeneous RLC circuit (no voltage source) shown in the diagram below. Before
the switch is closed, the capacitor has an initial charge go and the circuit has an initial current go-
R
9(1)
i(t)↓
After the switches closes, current flows through the circuit and the capacitor begins to discharge.
The equation that describes the total voltage in the loop comes from Kirchoff's voltage law:
L
di(t)
+ Ri(t)+(0) = 0,
(1)
where i(t) and q(t) are the current and capacitor charge as a function of time, L is the inductance,
R is the resistance, and C is the capacitance. Using the fact that the current equals the rate of
change of the capacitor charge, and dividing by L, we can write the following homogeneous (no
input source) differential equation for the charge on the capacitor:
4(1) +29(1)+w79(1)=0,
ཀྱི
where
a=
R
2L
and
The solution to this second order linear differential equation can be written as:
9(1) =Aent - Beat,
where
(3)
(4)
(5)
A=
(81+20)90 +90
(82+20)90 +90
and B=
(6)…
Chapter 31 Solutions
Electric Motor Control
Ch. 31 - Excluding slip, at what speed (r/min) will an...Ch. 31 - What is meant by the description separate winding...Ch. 31 - Prob. 3SQCh. 31 - Prob. 4SQCh. 31 - In Figure 314, what does the broken line between...Ch. 31 - When the high button is depressed in Figure 314,...Ch. 31 - Which coils are energized immediately when the...Ch. 31 - At what speed can a four-pole, 240-volt, 5-hp,...Ch. 31 - What is meant by the compelling action produced by...Ch. 31 - Prob. 10SQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Consider the homogeneous RLC circuit (no voltage source) shown in the diagram below. Before the switch is closed, the capacitor has an initial charge go and the circuit has an initial current go. R w i(t) q(t) C н After the switches closes, current flows through the circuit and the capacitor begins to discharge. The equation that describes the total voltage in the loop comes from Kirchoff's voltage law: di(t) L + Ri(t) + (t) = 0, dt (1) where i(t) and q(t) are the current and capacitor charge as a function of time, L is the inductance, R is the resistance, and C is the capacitance. Using the fact that the current equals the rate of change of the capacitor charge, and dividing by L, we can write the following homogeneous (no input source) differential equation for the charge on the capacitor: ä(t)+2ag(t)+wg(t) = 0, (2) where R a 2L and w₁ = C LC The solution to this second order linear differential equation can be written as: where 81= q(t) = Ae³¹- Bel 82 = (3) (4) (5)arrow_forwardI need help with this problem and an explanation of the solution for the image described below. (Introduction to Signals and Systems)arrow_forwardFind Rth at open terminals using a 1V test source.arrow_forward
- A particular battery charger produces a constant current of 2.4 amperes to charge a 3.7 volt Iphone battery. It can fully charge a dead battery to full charge in 6 hours. (a) How many electrons are in the charged battery? (b) What amount of energy in Joules does the battery provide if it deliveres 0.25 amperes of current to a phone for 4 hours.arrow_forwardplease see fig 2 to answerarrow_forwardSOLVE ON PAPER DO NOT USE CHATGPT OR AIarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Delmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningElectricity for Refrigeration, Heating, and Air C...Mechanical EngineeringISBN:9781337399128Author:Russell E. SmithPublisher:Cengage Learning
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Electricity for Refrigeration, Heating, and Air C...
Mechanical Engineering
ISBN:9781337399128
Author:Russell E. Smith
Publisher:Cengage Learning
Power vs Torque - In Depth Explanation and Mythbusting; Author: kyle.Engineers;https://www.youtube.com/watch?v=X7KWtf4wqN4;License: Standard Youtube License