EBK PHYSICS FOR SCIENTISTS AND ENGINEER
6th Edition
ISBN: 9781319321710
Author: Mosca
Publisher: VST
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 31, Problem 74P
To determine
The proof that
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
ni sin θi = nr sin θr
Light traveling through air (n=1.00) strikes the surface of cubic zirconia fake diamond at an incident angle of 60°. The refracted angle is 23.4°. What is the index of refraction of cubic zirconia?
In the figure, light is incident at angle 6, = 41.0° on a boundary between two transparent materials. Some of the light travels down through the next three layers of transparent materials, while some of it reflects
upward and then escapes into the air. If n1 = 1.28, n, = 1.38, ng = 1.30 and n4 = 1.43, what is the value of (a) 05 and (b) 04?
Air
(a) 05 = NumberT32.02
UnitsTo (degrees)
(b)04 = NumberT43.1
Units
(degrees)
K
A light ray with a wavelength of 589 nanometers (produced by a sodium lamp) traveling through air makes an angle of
= to find the angle of refraction,
V2
sin 0₁ V₁
y
incidence of 55° on a smooth, flat slab of dense flint glass. Use Snell's Law,
sin 02
where the index of refraction is 1.66.
...
The angle of refraction is approximately degrees.
(Type an integer or decimal rounded to two decimal places as needed.)
Chapter 31 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
Ch. 31 - Prob. 1PCh. 31 - Prob. 2PCh. 31 - Prob. 3PCh. 31 - Prob. 4PCh. 31 - Prob. 5PCh. 31 - Prob. 6PCh. 31 - Prob. 7PCh. 31 - Prob. 8PCh. 31 - Prob. 9PCh. 31 - Prob. 10P
Ch. 31 - Prob. 11PCh. 31 - Prob. 12PCh. 31 - Prob. 13PCh. 31 - Prob. 14PCh. 31 - Prob. 15PCh. 31 - Prob. 16PCh. 31 - Prob. 17PCh. 31 - Prob. 18PCh. 31 - Prob. 19PCh. 31 - Prob. 20PCh. 31 - Prob. 21PCh. 31 - Prob. 22PCh. 31 - Prob. 23PCh. 31 - Prob. 24PCh. 31 - Prob. 25PCh. 31 - Prob. 26PCh. 31 - Prob. 27PCh. 31 - Prob. 28PCh. 31 - Prob. 29PCh. 31 - Prob. 30PCh. 31 - Prob. 31PCh. 31 - Prob. 32PCh. 31 - Prob. 33PCh. 31 - Prob. 34PCh. 31 - Prob. 35PCh. 31 - Prob. 36PCh. 31 - Prob. 37PCh. 31 - Prob. 38PCh. 31 - Prob. 39PCh. 31 - Prob. 40PCh. 31 - Prob. 41PCh. 31 - Prob. 42PCh. 31 - Prob. 43PCh. 31 - Prob. 44PCh. 31 - Prob. 45PCh. 31 - Prob. 46PCh. 31 - Prob. 47PCh. 31 - Prob. 48PCh. 31 - Prob. 49PCh. 31 - Prob. 50PCh. 31 - Prob. 51PCh. 31 - Prob. 52PCh. 31 - Prob. 53PCh. 31 - Prob. 54PCh. 31 - Prob. 55PCh. 31 - Prob. 56PCh. 31 - Prob. 57PCh. 31 - Prob. 58PCh. 31 - Prob. 59PCh. 31 - Prob. 60PCh. 31 - Prob. 61PCh. 31 - Prob. 62PCh. 31 - Prob. 63PCh. 31 - Prob. 64PCh. 31 - Prob. 65PCh. 31 - Prob. 66PCh. 31 - Prob. 67PCh. 31 - Prob. 68PCh. 31 - Prob. 69PCh. 31 - Prob. 70PCh. 31 - Prob. 71PCh. 31 - Prob. 72PCh. 31 - Prob. 73PCh. 31 - Prob. 74PCh. 31 - Prob. 75PCh. 31 - Prob. 76PCh. 31 - Prob. 77PCh. 31 - Prob. 78PCh. 31 - Prob. 79PCh. 31 - Prob. 80PCh. 31 - Prob. 81PCh. 31 - Prob. 82PCh. 31 - Prob. 83PCh. 31 - Prob. 84P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In the figure, light is incident at angle 8₁ = 39° on a boundary between two transparent materials. Some of the light travels down through the next three layers of transparent materials, while some of it reflects upward and then escapes into the air. If n₁ = 1.28, n₂ = 1.38, n3 = 1.34 and n4 = 1.45, what is the value of (a) 05 and (b) 04? 18₁ Air m n₂ 173 naarrow_forwardIn the figure, light initially in material 1 refracts into material 2, crosses that material, and is then incident at the critical angle on the interface between materials 2 and 3. The indices of refraction are n, = What is angle 0? (b) If 0 is increased, is there refraction of light into material 3? 1.60, n2 1.40, n3 = 1.18. (а) %3D le n2 (a) Number Units (b)arrow_forwardPlease asaparrow_forward
- The figure below shows the path of a beam of light through several layers with different indices of refraction. (Assume n. 1.08.) n = 1.60 n = 1.40 n = 1.20 (a) If 01 36.0°, what is the angle 0, of the emerging beam? %D (b) What is the smallest incident angle 0, to have total internal reflection at the surface between the medium with n = 1.20 and the medium withn, = 1.08?arrow_forwardA thick piece of Lucite (n = 1.50) has the shape of a quarter circle of radius R = 12.8 cm as shown in the side view of the figure below. A light ray traveling in air parallel to the base of the Lucite is incident at a distance h = 6.60 cm above the base and emerges out of the Lucite at an angle e with the horizontal. Determine the value of 8. Incoming ray Outgoing ray Rarrow_forwardA beam of light moves through a slab of glass as shown in the figure. The index of refraction of the glass is ng = 1.5. The index of refraction of air is na = 1. The incident angle of the light is \theta i = 44\deg . Part (a) If the refraction angle of the light at the upper surface of the slab is \theta 1, express sin\theta 1 in terms of \theta i, na, and ng. Part (b) The incident angle of the light on the lower surface of the slab is \theta 2. What is the relation between \theta 1 and \theta 2? Part (c) The refraction angle of the light on the lower surface of the slab is \theta f. Express sin(\theta f) in terms of \theta 2, na, and ng.arrow_forward
- In Figure, light is incident at angle 0,=40.1° on a boundary between two transparent materials. Some of the light travels down through the next three layers of transparent materials, while some of it reflects upward and then escape into the air. If n;=1.3, n,= 1.4, n;=1.32, and ng= 1.45, what is Air the value of (a) 0g and (b) 04?arrow_forwardIn the figure, light is incident at angle 0, = 41° on a boundary between two transparent materials. Some of the light travels down through the next three layers of transparent materials, while some of it reflects upward and then escapes into the air. If nį = 1.30, n2 = 1.40, n3 = 1.32 and n4 = 1.43, what is the value of 04? 20. Air ng 74 (a) 28.8° (b) 32.8° (c) 36.6° (d) 40.6° (e) None of the abovearrow_forward7 t=?arrow_forward
- A ray of light is incident on a glass prism (n 1.5) with an angle of incidence 6, = 40/The ray emerges from the opposite side of the prism with an angle 0,. The apex angle of the prism is 60. The deviation angle, 6, between the incident ray and the emerging ray is then: 60 e, = 40 nair1 13.8 44.5 21.7° 38.4° 51.3°arrow_forward(a) A small light fixture on the bottom of a swimming pool is 0.86 m below the surface. The light emerging from the still water forms a circle on the water surface. What is the diameter of this circle? (Give your answer, in m, to at least two decimal places.) m (b) What If? If a 1.58 cm thick layer of oil (noil 1.35) is spread uniformly over the surface of the water, what is the diameter of the circle of light emerging from the swimming pool? (Give your answer, in m, to at least two decimal places.) m =arrow_forwardIn the figure, light is incident at angle 01 = 37.0° on a boundary between two transparent materials. Some of the light travels down through the next three layers of transparent materials, while some of it reflects upward and then escapes into the air. If n1 = 1.28, n2 = 1.40, n3 = 1.34 and n4 = 1.45, what is the value of (a) 05 and (b) 04? Air N2 n4 (a) 85: %3D Number Units (b) 84 Number Unitsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY