
Concept explainers
(a)
The expression for the current in terms of
(a)

Answer to Problem 58AP
The expression for the current in terms of
Explanation of Solution
Write the expression to obtain the area enclosed between the bar and the two rails.
Here,
Write the expression to obtain the magnetic flux.
Here,
Substitute
Write the expression for induced emf based on Faraday’s law.
Here,
Substitute
Here,
Write the expression to obtain the magnitude of current induced in the bar.
Here,
Substitute
Therefore, the expression for the current in terms of
(b)
The analysis model that properly describes the moving bar when maximum power is delivered to the light bulb.
(b)

Answer to Problem 58AP
The bar moves with the constant velocity when maximum power is delivered to the light bulb. This constant velocity with which the bar is moving is due to the reason that the magnetic force is equal in magnitude to the applied force but they are opposite in direction. Thus this analysis model is similar model of particle in equilibrium.
Explanation of Solution
The analysis model that properly describes the moving bar when maximum power is delivered to the light bulb is similar to the model of particle in equilibrium that is when the resultant of all the forces is equal to zero. It means that the particle is in equilibrium.
The bar moves with the constant velocity when maximum power is delivered to the light bulb. This constant velocity with which the bar is moving is due to the reason that the magnetic force is equal in magnitude to the applied force but they are opposite in direction. Thus this analysis model is similar model of particle in equilibrium.
(c)
The speed with which the bar is moving when maximum power is delivered to the light bulb.
(c)

Answer to Problem 58AP
The speed with which the bar is moving when maximum power is delivered to the light bulb is
Explanation of Solution
Write the expression when maximum power is delivered to the light bulb.
Here,
Write the expression to obtain the applied force to the bar.
Here,
Compare equation (I) and (II).
Substitute
Here,
Conclusion:
Substitute
Therefore, the speed with which the bar is moving when maximum power is delivered to the light bulb is
(d)
The current in the light bulb when maximum power is delivered to it.
(d)

Answer to Problem 58AP
The current in the light bulb when maximum power is delivered to it is
Explanation of Solution
Consider equation (III).
Re-write the above equation.
Conclusion:
Substitute
Therefore, the current in the light bulb when maximum power is delivered to it is
(e)
The maximum power delivered to the light bulb.
(e)

Answer to Problem 58AP
The maximum power delivered to the light bulb is
Explanation of Solution
Write the expression to obtain the maximum power delivered to the light bulb.
Here,
Conclusion:
Substitute
Therefore, the maximum power delivered to the light bulb is
(f)
The maximum mechanical input power delivered to the bar by the applied force.
(f)

Answer to Problem 58AP
The maximum mechanical input power delivered to the bar by the applied force is
Explanation of Solution
Write the expression to obtain the maximum mechanical input power delivered to the bar by the applied force.
Here,
Conclusion:
Substitute
Therefore, the maximum mechanical input power delivered to the bar by the applied force is
(g)
Weather the speed found in part (c) change, if the resistance increases and all the other quantity remain same.
(g)

Answer to Problem 58AP
Yes, the speed found in part (c) change, if the resistance increases and all the other quantity remain same.
Explanation of Solution
Write the expression (IV) used in part (c) to determine the speed of the bar.
From the above expression, speed is directly proportional to the resistance. Thus, if the resistance increases than the speed is also increases if all the other quantity remains constant.
Therefore, the speed found in part (c) changes, if the resistance increases and all the other quantity remains the same.
(h)
Weather the speed found in part (c) increases or decreases if resistance increases and all the other quantities remain same.
(h)

Answer to Problem 58AP
The speed found in part (c) increases if resistance increases and all the other quantities remain same.
Explanation of Solution
Write the expression (IV) used in part (c) to determine the speed of the bar.
From the above expression, speed is directly proportional to the resistance.
Therefore, the speed found in part (c) increases if resistance increases and all the other quantities remain same.
(i)
Weather the power found in part (f) change if resistance increases as current increases.
(i)

Answer to Problem 58AP
Yes, the power found in part (f) changes if resistance increases as current increases.
Explanation of Solution
Write the expression used in part (f) to determine the speed of the bar.
From the above expression, power is directly proportional to the velocity and further velocity is directly proportional to the resistance.
Therefore, the power found in part (f) changes if resistance increases as current increases.
(j)
Weather the power found in part (f) is larger or smaller if resistance increases as current increases.
(j)

Answer to Problem 58AP
The power found in part (f) is smaller if the resistance increases as current increases.
Explanation of Solution
Write the expression used in part (f) to determine the speed of the bar.
From the above expression, power is directly proportional to the velocity and further velocity is directly proportional to the resistance.
Thus, power increase if resistance increases.
Therefore, the power found in part (f) is smaller if the resistance increases as current increases.
Want to see more full solutions like this?
Chapter 31 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
- Earth’s mantle is Question 12Select one: a. Solid b. Liquid c. Metallic d. very dense gasarrow_forwardSilicates Question 18Select one: a. All of these b. Are minerals c. Consist of tetrahedra d. Contain silicon and oxygenarrow_forwardWhich of the following is not one of the major types of metamorphism? Question 20Select one: a. Fold b. Contact c. Regional d. Sheararrow_forward
- A bungee jumper plans to bungee jump from a bridge 64.0 m above the ground. He plans to use a uniform elastic cord, tied to a harness around his body, to stop his fall at a point 6.00 m above the water. Model his body as a particle and the cord as having negligible mass and obeying Hooke's law. In a preliminary test he finds that when hanging at rest from a 5.00 m length of the cord, his body weight stretches it by 1.55 m. He will drop from rest at the point where the top end of a longer section of the cord is attached to the bridge. (a) What length of cord should he use? m (b) What maximum acceleration will he experience? m/s²arrow_forwardOne end of a light spring with spring constant k is attached to the ceiling. A second light spring is attached to the lower end, with spring constant k. An object of mass m is attached to the lower end of the second spring. (a) By how much does the pair of springs stretch? (Use the following as necessary: k₁, k₂, m, and g, the gravitational acceleration.) Xtotal (b) What is the effective spring constant of the spring system? (Use the following as necessary: k₁, k₂, m, and g, the gravitational acceleration.) Keff (c) What If? Two identical light springs with spring constant k3 are now individually hung vertically from the ceiling and attached at each end of a symmetric object, such as a rectangular block with uniform mass density. In this case, with the springs next to each other, we describe them as being in parallel. Find the effective spring constant of the pair of springs as a system in this situation in terms of k3. (Use the following as necessary: k3, M, the mass of the symmetric…arrow_forwardA object of mass 3.00 kg is subject to a force FX that varies with position as in the figure below. Fx (N) 4 3 2 1 x(m) 2 4 6 8 10 12 14 16 18 20 i (a) Find the work done by the force on the object as it moves from x = 0 to x = 5.00 m. J (b) Find the work done by the force on the object as it moves from x = 5.00 m to x = 11.0 m. ] (c) Find the work done by the force on the object as it moves from x = 11.0 m to x = 18.0 m. J (d) If the object has a speed of 0.400 m/s at x = 0, find its speed at x = 5.00 m and its speed at x speed at x = 5.00 m speed at x = 18.0 m m/s m/s = 18.0 m.arrow_forward
- A crate with a mass of 74.0 kg is pulled up an inclined surface by an attached cable, which is driven by a motor. The crate moves a distance of 70.0 m along the surface at a constant speed of 3.3 m/s. The surface is inclined at an angle of 30.0° with the horizontal. Assume friction is negligible. (a) How much work (in kJ) is required to pull the crate up the incline? kJ (b) What power (expressed in hp) must a motor have to perform this task? hparrow_forwardA deli uses an elevator to move items from one level to another. The elevator has a mass of 550 kg and moves upward with constant acceleration for 2.00 s until it reaches its cruising speed of 1.75 m/s. (Note: 1 hp (a) What is the average power (in hp) of the elevator motor during this time interval? Pave = hp (b) What is the motor power (in hp) when the elevator moves at its cruising speed? Pcruising hp = 746 W.)arrow_forwardA 1.40-kg object slides to the right on a surface having a coefficient of kinetic friction 0.250 (Figure a). The object has a speed of v₁ = 3.50 m/s when it makes contact with a light spring (Figure b) that has a force constant of 50.0 N/m. The object comes to rest after the spring has been compressed a distance d (Figure c). The object is then forced toward the left by the spring (Figure d) and continues to move in that direction beyond the spring's unstretched position. Finally, the object comes to rest a distance D to the left of the unstretched spring (Figure e). d m v=0 -D- www (a) Find the distance of compression d (in m). m (b) Find the speed v (in m/s) at the unstretched position when the object is moving to the left (Figure d). m/s (c) Find the distance D (in m) where the object comes to rest. m (d) What If? If the object becomes attached securely to the end of the spring when it makes contact, what is the new value of the distance D (in m) at which the object will come to…arrow_forward
- As shown in the figure, a 0.580 kg object is pushed against a horizontal spring of negligible mass until the spring is compressed a distance x. The force constant of the spring is 450 N/m. When it is released, the object travels along a frictionless, horizontal surface to point A, the bottom of a vertical circular track of radius R = 1.00 m, and continues to move up the track. The speed of the object at the bottom of the track is VA = 13.0 m/s, and the object experiences an average frictional force of 7.00 N while sliding up the track. R (a) What is x? m A (b) If the object were to reach the top of the track, what would be its speed (in m/s) at that point? m/s (c) Does the object actually reach the top of the track, or does it fall off before reaching the top? O reaches the top of the track O falls off before reaching the top ○ not enough information to tellarrow_forwardA block of mass 1.4 kg is attached to a horizontal spring that has a force constant 900 N/m as shown in the figure below. The spring is compressed 2.0 cm and is then released from rest. wwww wwwwww a F x = 0 0 b i (a) A constant friction force of 4.4 N retards the block's motion from the moment it is released. Using an energy approach, find the position x of the block at which its speed is a maximum. ст (b) Explore the effect of an increased friction force of 13.0 N. At what position of the block does its maximum speed occur in this situation? cmarrow_forwardYou have a new internship, where you are helping to design a new freight yard for the train station in your city. There will be a number of dead-end sidings where single cars can be stored until they are needed. To keep the cars from running off the tracks at the end of the siding, you have designed a combination of two coiled springs as illustrated in the figure below. When a car moves to the right in the figure and strikes the springs, they exert a force to the left on the car to slow it down. Total force (N) 2000 1500 1000 500 Distance (cm) 10 20 30 40 50 60 i Both springs are described by Hooke's law and have spring constants k₁ = 1,900 N/m and k₂ = 2,700 N/m. After the first spring compresses by a distance of d = 30.0 cm, the second spring acts with the first to increase the force to the left on the car in the figure. When the spring with spring constant k₂ compresses by 50.0 cm, the coils of both springs are pressed together, so that the springs can no longer compress. A typical…arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





