a. Graph f x = x − 2 . b. From the graph of f , is f a one-to-one function? c. Write the domain of f in interval notation. d. Write the range of f in interval notation. e. Write an equation for f − 1 x . f. Explain why the restriction x ≥ 0 is placed on f − 1 . g. Graph y = f x and y = f − 1 x on the same coordinate system . h. Write the domain of f − 1 in interval notation. i. Write the range of f − 1 in interval notation.
a. Graph f x = x − 2 . b. From the graph of f , is f a one-to-one function? c. Write the domain of f in interval notation. d. Write the range of f in interval notation. e. Write an equation for f − 1 x . f. Explain why the restriction x ≥ 0 is placed on f − 1 . g. Graph y = f x and y = f − 1 x on the same coordinate system . h. Write the domain of f − 1 in interval notation. i. Write the range of f − 1 in interval notation.
Solution Summary: The author explains that the function f(x)=sqrtx-2 is a one-to-one function.
b. From the graph of
f
, is
f
a one-to-one function?
c. Write the domain of
f
in interval notation.
d. Write the range of
f
in interval notation.
e. Write an equation for
f
−
1
x
.
f. Explain why the restriction
x
≥
0
is placed on
f
−
1
.
g. Graph
y
=
f
x
and
y
=
f
−
1
x
on the same coordinate system.
h. Write the domain of
f
−
1
in interval notation.
i. Write the range of
f
−
1
in interval notation.
System that uses coordinates to uniquely determine the position of points. The most common coordinate system is the Cartesian system, where points are given by distance along a horizontal x-axis and vertical y-axis from the origin. A polar coordinate system locates a point by its direction relative to a reference direction and its distance from a given point. In three dimensions, it leads to cylindrical and spherical coordinates.
Consider the function f(x) = x²-1.
(a) Find the instantaneous rate of change of f(x) at x=1 using the definition of the derivative.
Show all your steps clearly.
(b) Sketch the graph of f(x) around x = 1. Draw the secant line passing through the points on the
graph where x 1 and x->
1+h (for a small positive value of h, illustrate conceptually). Then,
draw the tangent line to the graph at x=1. Explain how the slope of the tangent line relates to the
value you found in part (a).
(c) In a few sentences, explain what the instantaneous rate of change of f(x) at x = 1 represents in
the context of the graph of f(x). How does the rate of change of this function vary at different
points?
1. The graph of ƒ is given. Use the graph to evaluate each of the following values. If a value does not exist,
state that fact.
и
(a) f'(-5)
(b) f'(-3)
(c) f'(0)
(d) f'(5)
2. Find an equation of the tangent line to the graph of y = g(x) at x = 5 if g(5) = −3 and g'(5)
=
4.
-
3. If an equation of the tangent line to the graph of y = f(x) at the point where x 2 is y = 4x — 5, find ƒ(2)
and f'(2).
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.