![Student Solutions Manual For Zill's A First Course In Differential Equations With Modeling Applications, 11th](https://www.bartleby.com/isbn_cover_images/9781305965737/9781305965737_largeCoverImage.gif)
Concept explainers
What Goes Up …
- (a) It is well known that the model in which air resistance is ignored, part (a) of Problem 36, predicts that the time ta it takes the cannonball to attain its maximum height is the same as the time td it takes the cannonball to fall from the maximum height to the ground. Moreover, the magnitude of the impact velocity vi will be the same as the initial velocity v0 of the cannonball. Verify both of these results.
- (b) Then, using the model in Problem 37 that takes air resistance into account, compare the value of ta with td and the value of the magnitude of vi with v0. A root-finding application of a CAS (or graphic calculator) may be useful here.
36. How High?—No Air Resistance Suppose a small cannonball weighing 16 pounds is shot vertically upward, as shown in Figure 3.1.13, with an initial velocity v0 = 300 ft/s. The answer to the question “How high does the cannonball go?” depends on whether we take air resistance into account.
- (a) Suppose air resistance is ignored. If the positive direction is upward, then a model for the state of the cannonball is given by d2s/dt2 = −g (equation (12) of Section 1.3). Since ds/dt = v(t) the last differential equation is the same as dv/dt = −g, where we take g = 32 ft/s2. Find the velocity v(t) of the cannonball at time t.
- (b) Use the result obtained in part (a) to determine the height s(t) of the cannonball measured from ground level. Find the maximum height attained by the cannonball.
FIGURE 3.1.13 Find the maximum height of the cannonball in Problem 36
37. How High?—Linear Air Resistance Repeat Problem 36, but this time assume that air resistance is proportional to instantaneous velocity. It stands to reason that the maximum height attained by the cannonball must be less than that in part (b) of Problem 36. Show this by supposing that the constant of proportionality is k = 0.0025. [Hint: Slightly modify the differential equation in Problem 35.]
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Chapter 3 Solutions
Student Solutions Manual For Zill's A First Course In Differential Equations With Modeling Applications, 11th
- Solve the equation. Write the smaller answer first. 2 (x-6)² = 36 x = Α x = Previous Page Next Pagearrow_forwardWrite a quadratic equation in factored form that has solutions of x = 2 and x = = -3/5 ○ a) (x-2)(5x + 3) = 0 ○ b) (x + 2)(3x-5) = 0 O c) (x + 2)(5x -3) = 0 ○ d) (x-2)(3x + 5) = 0arrow_forwardA vacant lot is being converted into a community garden. The garden and a walkway around its perimeter have an area of 690 square feet. Find the width of the walkway (x) if the garden measures 14 feet wide by 18 feet long. Write answer to 2 decimal places. (Write the number without units). Hint: add 2x to each of the garden dimensions of 14 x 18 feet to get the total area for the length multiplied by width.arrow_forward
- Solve the rational equation 14 1 + x-6 x x-7 x-7 ○ a) x = 1, x = 8 ○ b) x = 1 ○ c) x = 7 ○ d) x = 1, x = 7arrow_forwardSolve the absolute inequality | x + 5 > 3 ○ a) (-∞, -8] U[-2, ∞0) ☐ b) (-8, -2) c) (-2, ∞0) ○ d) (-∞, - 8) U(-2, ∞0)arrow_forward1) Listen Describe the error in the problem X 3 X x 3 - 2 = 25x = 0 25x 25 x = ±5arrow_forward
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)