PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
6th Edition
ISBN: 9781429206099
Author: Tipler
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 31, Problem 49P
To determine
The difference between angles of refraction for red and violet light.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A beam of light passes through a crystal with index of refraction of 1.65. The crystal has a thickness of 5.00 cm. The light that emerges from the other side is dispersed a distance dcompared to the path the light would take if the refraction didn ́t happen as shown on the figure. a) Determine the dispersion d of the incidence light. b) Determine the time the light takes to pass through the crystal.
10. A light ray of given wavelength, initially in air, strikes a 90°
prism at P (see Fig. 39-53) and is refracted there and at Q to
such an extent that it just grazes the right-hand prism surface
at Q. (a) Determine the index of retraction of the prism for
this wavelength in terms of the angle of incidence , that
gives rise to this situation. (b) Give a numerical upper bound
for the index of refraction of the prism. Show, by ray dia-
grams, what happens if the angle of incidence at P is
(c) slightly greater or (d) slightly less than 0₁.
90
FIGURE 39-53. Problem 10.
..54
Dispersion in a window pane. In
gle e
Fig. 33-54, a beam of white light is incident at an-
50° on a common window pane (shown
in cross section). For the pane's type of glass, the
index of refraction for visible light ranges from
1.524 at the blue end of the spectrum to 1.509 at
the red end. The two sides of the pane are paral-
lel. What is the angular spread of the colors in the
beam (a) when the light enters the pane and
(b) when it emerges from the opposite side?
(Hint: When you look at an object through a window pane, are
the colors the light from the object dispersed as shown in, say,
Fig. 33-20?)
=
Ꮎ
Figure 33-54
Problem 54.
Chapter 31 Solutions
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
Ch. 31 - Prob. 1PCh. 31 - Prob. 2PCh. 31 - Prob. 3PCh. 31 - Prob. 4PCh. 31 - Prob. 5PCh. 31 - Prob. 6PCh. 31 - Prob. 7PCh. 31 - Prob. 8PCh. 31 - Prob. 9PCh. 31 - Prob. 10P
Ch. 31 - Prob. 11PCh. 31 - Prob. 12PCh. 31 - Prob. 13PCh. 31 - Prob. 14PCh. 31 - Prob. 15PCh. 31 - Prob. 16PCh. 31 - Prob. 17PCh. 31 - Prob. 18PCh. 31 - Prob. 19PCh. 31 - Prob. 20PCh. 31 - Prob. 21PCh. 31 - Prob. 22PCh. 31 - Prob. 23PCh. 31 - Prob. 24PCh. 31 - Prob. 25PCh. 31 - Prob. 26PCh. 31 - Prob. 27PCh. 31 - Prob. 28PCh. 31 - Prob. 29PCh. 31 - Prob. 30PCh. 31 - Prob. 31PCh. 31 - Prob. 32PCh. 31 - Prob. 33PCh. 31 - Prob. 34PCh. 31 - Prob. 35PCh. 31 - Prob. 36PCh. 31 - Prob. 37PCh. 31 - Prob. 38PCh. 31 - Prob. 39PCh. 31 - Prob. 40PCh. 31 - Prob. 41PCh. 31 - Prob. 42PCh. 31 - Prob. 43PCh. 31 - Prob. 44PCh. 31 - Prob. 45PCh. 31 - Prob. 46PCh. 31 - Prob. 47PCh. 31 - Prob. 48PCh. 31 - Prob. 49PCh. 31 - Prob. 50PCh. 31 - Prob. 51PCh. 31 - Prob. 52PCh. 31 - Prob. 53PCh. 31 - Prob. 54PCh. 31 - Prob. 55PCh. 31 - Prob. 56PCh. 31 - Prob. 57PCh. 31 - Prob. 58PCh. 31 - Prob. 59PCh. 31 - Prob. 60PCh. 31 - Prob. 61PCh. 31 - Prob. 62PCh. 31 - Prob. 63PCh. 31 - Prob. 64PCh. 31 - Prob. 65PCh. 31 - Prob. 66PCh. 31 - Prob. 67PCh. 31 - Prob. 68PCh. 31 - Prob. 69PCh. 31 - Prob. 70PCh. 31 - Prob. 71PCh. 31 - Prob. 72PCh. 31 - Prob. 73PCh. 31 - Prob. 74PCh. 31 - Prob. 75PCh. 31 - Prob. 76PCh. 31 - Prob. 77PCh. 31 - Prob. 78PCh. 31 - Prob. 79PCh. 31 - Prob. 80PCh. 31 - Prob. 81PCh. 31 - Prob. 82PCh. 31 - Prob. 83PCh. 31 - Prob. 84P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The structure of the NaCl crystal forms reflecting planes 0.541 nm apart. What is the smallest angle, measured from these planes, at which X-ray diffraction can be observed, if X-rays of wavelength 0.085 nm are used?arrow_forwardPlease asaparrow_forwardV:09 I+%VO VMIFI A ray of light is incident normally on one of the faces of a prism of index of refractionn = 1.49. The ray emerges out of the prism with an angle of refraction e equal to: 50° Nair = 1 n a a 22.7° 21.4° 26.8° 20.2° 24.0°arrow_forward
- The diamond has a face-centered cubic crystal lattice, and there are eight atoms in a unit cell. Its density is 3.51 g cm -3 Calculate the first six angles at which reflections would be ob tained using an X-ray beam of wavelength 7.12 pm.arrow_forwardK A light ray with a wavelength of 589 nanometers (produced by a sodium lamp) traveling through air makes an angle of = to find the angle of refraction, V2 sin 0₁ V₁ y incidence of 55° on a smooth, flat slab of dense flint glass. Use Snell's Law, sin 02 where the index of refraction is 1.66. ... The angle of refraction is approximately degrees. (Type an integer or decimal rounded to two decimal places as needed.)arrow_forwardWhen the incident angle is Brewster’s angle the reflected light is 100% plane polarized and the reflected ray makes 90o with the refracted ray. True or Falsearrow_forward
- A beam of light, traveling in air, strikes a plate of transparent material at an angle of incidence of 56.0°. It is observed that the reflected and refracted beams form an angle of 90.0°. What is the index of refraction of this material? Jhy O 1.48 O 1.43 1.44 O 1.40arrow_forwardThe refractive index of a certain glass is 1.66 For what incident angle is light reflected from the surface of this glass completely polarized if the glass is immersed in (i) air and (ii) water?arrow_forwardThe index of refraction for violet light in silica flint glass is ny , and that for red light is nR. What is the angular spread of visible light passing through a prism of apex angle if the angle of incidence is 0? See figure below. (Use any variable or symbol stated above as necessary.) sin (sin(0)) sin "Rsin( Ø) – sin sin( Ø) nv sin Ø -sin nv NR Deviation of red light Visible light R Angular spread V Screen Additional Materials O eBookarrow_forward
- The index of refraction of diamond is 2.42. By definition, this means that a given wavelength of light travels: O 2.42 times faster in air than it does in diamond O 2.42 times faster in a vacuum than it does in diamond 2.42 times faster in diamond than it does in a vacuum 2.42 times faster in a diamond that it does in airarrow_forwardThe angle of incidence of a light beam in air onto a reflecting surface is continuously variable. The reflected ray is found to be completely polarized when the angle of incidence is 63.0°. (a) What is the index of refraction of the reflecting material? (b) If some of the incident light (at an angle of 63.0°) passes into the material below the surface, what is the angle of refraction? answer in degrees °arrow_forward77 E Rainbow. Figure 33-67 shows a light ray entering and then leaving a falling, spherical raindrop after one internal reflec- tion (see Fig. 33-21a). The final direction of travel is deviated (turned) from the initial direction of travel by angular deviation Bdev- (a) Show that 6sey is Odey = 180° + 20, – 48, where e, is the angle of incidence of the ray on the drop and 0, is the angle of refraction of the ray within the drop. (b) Using Snell's law, substitute for 6, in terms of 6, and the index of refraction n of the water. Then, on a graphing calculator or with a computer graphing package, graph Osey versus 0, for the range of possible 6; values and for n = 1.331 for red light (at one end of the visible spectrum) and n = 1.333 for blue light (at the other end). The red-light curve and the blue-light curve have different minima, which means that there is a different angle of minimum deviation for each color. The light of any given color that leaves the drop at that color's angle of…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning