An N -turn square coil with side ℓ and resistance R is pulled to the right at constant speed v in the presence of a uniform magnetic field B acting perpendicular to the coil as shown in Figure P30.43. At t = 0, the right side of the coil has just departed the right edge of the field. At time t , the left side of the coil enters the region where B = 0. In terms of the quantities N , B , ℓ , v , and R , find symbolic expressions for (a) the magnitude of the induced emf in the loop during the time interval from t = 0 to t , (b) the magnitude of the induced current in the coil, (c) the power delivered to the coil, and (d) the force required to remove the coil from the field. (e) What is the direction of the induced current in the loop? (f) What is the direction of the magnetic force on the loop while it is being pulled out of the field? Figure P30.43
An N -turn square coil with side ℓ and resistance R is pulled to the right at constant speed v in the presence of a uniform magnetic field B acting perpendicular to the coil as shown in Figure P30.43. At t = 0, the right side of the coil has just departed the right edge of the field. At time t , the left side of the coil enters the region where B = 0. In terms of the quantities N , B , ℓ , v , and R , find symbolic expressions for (a) the magnitude of the induced emf in the loop during the time interval from t = 0 to t , (b) the magnitude of the induced current in the coil, (c) the power delivered to the coil, and (d) the force required to remove the coil from the field. (e) What is the direction of the induced current in the loop? (f) What is the direction of the magnetic force on the loop while it is being pulled out of the field? Figure P30.43
Solution Summary: The author analyzes the induced emf in the loop during time interval from 0 to T.
An N-turn square coil with side ℓ and resistance R is pulled to the right at constant speed v in the presence of a uniform magnetic field B acting perpendicular to the coil as shown in Figure P30.43. At t = 0, the right side of the coil has just departed the right edge of the field. At time t, the left side of the coil enters the region where B = 0. In terms of the quantities N, B, ℓ, v, and R, find symbolic expressions for (a) the magnitude of the induced emf in the loop during the time interval from t = 0 to t, (b) the magnitude of the induced current in the coil, (c) the power delivered to the coil, and (d) the force required to remove the coil from the field. (e) What is the direction of the induced current in the loop? (f) What is the direction of the magnetic force on the loop while it is being pulled out of the field?
Taking a Hike
A hiker begins a trip by first walking 21.0 km southeast from her car. She stops and sets up her tent for the night. On the second day, she walks 46.0 km in a direction 60.0° north of east, at which point she discovers a forest ranger's tower.
y (km)
Can
N
W-DE
45.0°
60.0°
Tent
Tower
B
x (km)
☹
(a) Determine the components of the hiker's displacement for each day.
SOLUTION
Conceptualize We conceptualize the problem by drawing a sketch as in the figure. If we denote the displacement vectors on the first and second days by A and B, respectively, and use the ---Select-- as the origin of coordinates, we obtain the vectors shown in the figure. The sketch allows us to estimate the resultant vector as shown.
Categorize Drawing the resultant R, we can now categorize this problem as one we've solved before: --Select-- of two vectors. You should now have a hint of the power of categorization in that many new problems are very similar to problems we have already solved if we are…
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
What is Electromagnetic Induction? | Faraday's Laws and Lenz Law | iKen | iKen Edu | iKen App; Author: Iken Edu;https://www.youtube.com/watch?v=3HyORmBip-w;License: Standard YouTube License, CC-BY