An N -turn square coil with side ℓ and resistance R is pulled to the right at constant speed v in the presence of a uniform magnetic field B acting perpendicular to the coil as shown in Figure P30.43. At t = 0, the right side of the coil has just departed the right edge of the field. At time t , the left side of the coil enters the region where B = 0. In terms of the quantities N , B , ℓ , v , and R , find symbolic expressions for (a) the magnitude of the induced emf in the loop during the time interval from t = 0 to t , (b) the magnitude of the induced current in the coil, (c) the power delivered to the coil, and (d) the force required to remove the coil from the field. (e) What is the direction of the induced current in the loop? (f) What is the direction of the magnetic force on the loop while it is being pulled out of the field? Figure P30.43
An N -turn square coil with side ℓ and resistance R is pulled to the right at constant speed v in the presence of a uniform magnetic field B acting perpendicular to the coil as shown in Figure P30.43. At t = 0, the right side of the coil has just departed the right edge of the field. At time t , the left side of the coil enters the region where B = 0. In terms of the quantities N , B , ℓ , v , and R , find symbolic expressions for (a) the magnitude of the induced emf in the loop during the time interval from t = 0 to t , (b) the magnitude of the induced current in the coil, (c) the power delivered to the coil, and (d) the force required to remove the coil from the field. (e) What is the direction of the induced current in the loop? (f) What is the direction of the magnetic force on the loop while it is being pulled out of the field? Figure P30.43
Solution Summary: The author analyzes the induced emf in the loop during time interval from 0 to T.
An N-turn square coil with side ℓ and resistance R is pulled to the right at constant speed v in the presence of a uniform magnetic field B acting perpendicular to the coil as shown in Figure P30.43. At t = 0, the right side of the coil has just departed the right edge of the field. At time t, the left side of the coil enters the region where B = 0. In terms of the quantities N, B, ℓ, v, and R, find symbolic expressions for (a) the magnitude of the induced emf in the loop during the time interval from t = 0 to t, (b) the magnitude of the induced current in the coil, (c) the power delivered to the coil, and (d) the force required to remove the coil from the field. (e) What is the direction of the induced current in the loop? (f) What is the direction of the magnetic force on the loop while it is being pulled out of the field?
Three point-like charges are placed at the corners of a square as shown in the figure, 28.0
cm on each side. Find the minimum amount of work required by an external force to move
the charge q1 to infinity. Let q1=-2.10 μC, q2=+2.40 μС, q3=+3.60 μC.
A point charge of -4.00 nC is at the origin, and a second point charge of 6.00 nC is on the x axis at x= 0.820 mm . Find the magnitude and direction of the electric field at each of the following points on the x axis.
x2 = 19.0 cm
Four point-like charges are placed as shown in the figure, three of them are at the corners
and one at the center of a square, 36.0 cm on each side. What is the electric potential at
the empty corner? Let q1=q3=+26.0 µС, q2=-28.0 μC, and q4=-48.0μc
V
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
What is Electromagnetic Induction? | Faraday's Laws and Lenz Law | iKen | iKen Edu | iKen App; Author: Iken Edu;https://www.youtube.com/watch?v=3HyORmBip-w;License: Standard YouTube License, CC-BY