Concept explainers
The circuit in Figure P3 1.61 is located in a magnetic field whose magnitude varies with lime according to the expression B = 1.00 × 10-3 t, where B is in teslas and f is in seconds. Assume the resistance per length of the wire is 0.100 Ω/m. Find the current in section PQ of length a = 65.0 cm.
The current in the section PQ.
Answer to Problem 31.61AP
The current in the section PQ is
Explanation of Solution
Given Info: The time varying magnetic field is
The circuit diagram is as shown below.
Figure (1)
For loop 1:
The resistance of the loop is,
Here,
The length of PQ is
The area of the loop is,
Thus, the area of the loop 1 is
The flux induced in the loop is,
Here,
The angle between the normal component of the area and the magnetic field is,
Substitute
The emf induced in the loop is,
Substitute
Thus, the induced emf in the loop 1 is
The current in the loop is
Apply Kirchhoff’s loop rule in loop 1.
Substitute
For loop (2):
The resistance of the loop is,
The area of the loop is,
Thus, the area of the loop 2 is
The flux induced in the loop is,
The angle between the normal component of the area and the magnetic field is,
Substitute
Thus, the flux induced in the loop is
The emf induced in the loop is,
Substitute
Thus, the induced emf in the loop 2 is
The current in the loop is
Apply Kirchhoff’s loop rule in loop 2.
Substitute
From the figure (1) the current in the arm PQ is,
Substitute
Rearrange the equation (2) for
Substitute
Substitute
Rearrange the above equation for
Substitute
Further solve the above equation.
The current in PQ is
Conclusion:
Therefore, the current in the PQ arm is
Want to see more full solutions like this?
Chapter 31 Solutions
Physics for Scientists and Engineers, Volume 1, Chapters 1-22
- Checkpoint 4 The figure shows four orientations of an electric di- pole in an external electric field. Rank the orienta- tions according to (a) the magnitude of the torque on the dipole and (b) the potential energy of the di- pole, greatest first. (1) (2) E (4)arrow_forwardWhat is integrated science. What is fractional distillation What is simple distillationarrow_forward19:39 · C Chegg 1 69% ✓ The compound beam is fixed at Ę and supported by rollers at A and B. There are pins at C and D. Take F=1700 lb. (Figure 1) Figure 800 lb ||-5- F 600 lb بتا D E C BO 10 ft 5 ft 4 ft-—— 6 ft — 5 ft- Solved Part A The compound beam is fixed at E and... Hình ảnh có thể có bản quyền. Tìm hiểu thêm Problem A-12 % Chia sẻ kip 800 lb Truy cập ) D Lưu of C 600 lb |-sa+ 10ft 5ft 4ft6ft D E 5 ft- Trying Cheaa Những kết quả này có hữu ích không? There are pins at C and D To F-1200 Egue!) Chegg Solved The compound b... Có Không ☑ ||| Chegg 10 וחarrow_forward
- air is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forward
- No chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forwardCalculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forward
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning