In an equal-arm balance from the early 20th century (Fig. 31.23), an aluminum sheet hangs from one of the arms and passes between the poles of a magnet, causing the oscillations of the balance to decay rapidly. In the absence of such magnetic braking, the oscillation might continue for a long time, and the experimenter would have to wait to take a reading. Why do the oscillations decay? (a) because the aluminum sheet is attracted to the magnet (b) because currents in the aluminum sheet set up a magnetic field that opposes the oscillations (c) because aluminum is paramagnetic Figure 31.23 (Quick Quiz 31.5) In an old-fashioned equal-arm balance, an aluminum sheet hangs between the poles of a magnet.
In an equal-arm balance from the early 20th century (Fig. 31.23), an aluminum sheet hangs from one of the arms and passes between the poles of a magnet, causing the oscillations of the balance to decay rapidly. In the absence of such magnetic braking, the oscillation might continue for a long time, and the experimenter would have to wait to take a reading. Why do the oscillations decay? (a) because the aluminum sheet is attracted to the magnet (b) because currents in the aluminum sheet set up a magnetic field that opposes the oscillations (c) because aluminum is paramagnetic Figure 31.23 (Quick Quiz 31.5) In an old-fashioned equal-arm balance, an aluminum sheet hangs between the poles of a magnet.
Solution Summary: The author explains that currents in the aluminum sheet set up a magnetic field that opposes the oscillations of the balance.
In an equal-arm balance from the early 20th century (Fig. 31.23), an aluminum sheet hangs from one of the arms and passes between the poles of a magnet, causing the oscillations of the balance to decay rapidly. In the absence of such magnetic braking, the oscillation might continue for a long time, and the experimenter would have to wait to take a reading. Why do the oscillations decay? (a) because the aluminum sheet is attracted to the magnet (b) because currents in the aluminum sheet set up a magnetic field that opposes the oscillations (c) because aluminum is paramagnetic
Figure 31.23 (Quick Quiz 31.5) In an old-fashioned equal-arm balance, an aluminum sheet hangs between the poles of a magnet.
A toy car speeds up at 1.0 m/s2 while rolling down a ramp, and slows down at a rate of 2.0 m/s2 while rolling up the same ramp. What is the slope of the ramp in degrees? Grade in %? The friction coefficient?
Plz solution should be complete
No chatgpt pls will upvote .
A box with friction coefficient of 0.2 rests on a 12 foot long plank of wood. How high (in feet) must one side of the plank be lifted in order for the box to begin to slide?
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
What is Electromagnetic Induction? | Faraday's Laws and Lenz Law | iKen | iKen Edu | iKen App; Author: Iken Edu;https://www.youtube.com/watch?v=3HyORmBip-w;License: Standard YouTube License, CC-BY