Consider the apparatus shown in Figure P30.32: a
Figure P30.32
(a)
Answer to Problem 31.58AP
Explanation of Solution
Given info: Magnetic field of system is
The emf develop in the system can be given as,
Here,
The current developed in the bar can be given as,
Here,
Substitute
Thus, the expression for current is
Conclusion:
Therefore, the expression for current as a function of
(b)
Answer to Problem 31.58AP
Explanation of Solution
Given info: Magnetic field of system is
The power delivered to the light bulb can be given as,
Here,
As the power is function of both force and speed, in order to maximize the power both force and velocity needs to be maximum. The desired condition can only be achieved if there is loss of energy whatsoever which can only be possible if the particle is in equilibrium.
Thus, the analysis model which describes the moving bar for maximum power is particle under equilibrium.
Conclusion:
Therefore, the analysis model which describes the moving bar for maximum power is particle under equilibrium.
(c)
Answer to Problem 31.58AP
Explanation of Solution
Given info: Magnetic field of system is
The magnetic force applied on the bar can be given as,
Substitute
Rearrange the above equation for
Substitute
Thus, the speed of the bar is
Conclusion:
Therefore, the speed of the bar when maximum power is delivered to the light bulb is
(d)
Answer to Problem 31.58AP
Explanation of Solution
Given info: Magnetic field of system is
The current in the light bulb can be given as from equation (1),
Substitute
Thus, the current in light bulb is
Conclusion:
Therefore, the current in light bulb when maximum power is delivered is
(e)
Answer to Problem 31.58AP
Explanation of Solution
Given info: Magnetic field of system is
The power delivered to the light bulb can be given as,
Substitute
Thus, the maximum power delivered to the light bulb is
Conclusion:
Therefore, the maximum power delivered to the light bulb will be
(f)
Answer to Problem 31.58AP
Explanation of Solution
Given info: Magnetic field of system is
The mechanical input power can be given as,
Substitute
Thus, the maximum mechanical input power is
Conclusion:
The maximum mechanical input power delivered to the bar is
(g)
Answer to Problem 31.58AP
Explanation of Solution
Given info: Magnetic field of system is
Consider the expression for speed of the bar from equation (2).
As speed of the bar depends on the resistance, therefore it will change if the resistance increases.
Conclusion:
Therefore, the velocity will change if the resistance increases.
(h)
Answer to Problem 31.58AP
Explanation of Solution
Given info: Magnetic field of system is
Consider the expression for speed of the bar from equation (2),
From the above equation, the speed will be directly proportional to the resistance if all other variables are held constant.
Thus, the speed of the bar will increase if resistance increases.
Conclusion:
Therefore, the speed of the bar will increase if the resistance increases.
(i)
Answer to Problem 31.58AP
Explanation of Solution
Given info: Magnetic field of system is
As far as the mechanical power input is concerned it only depends on the load and the velocity of the object. Since the current in electrical machinery is analogous to mechanical load, an increase in current will lead to change in mechanical load which further changes the mechanical power input.
Thus, the mechanical power input will change.
Conclusion:
Therefore, the effect of increase in resistance and current on the mechanical power input is that it will change.
(j)
Answer to Problem 31.58AP
Explanation of Solution
Given info: Magnetic field of system is
Both current and resistance can never increase as it violates Ohm’s law which says that current is inversely proportional to resistance.
In order to increase current despite increase in resistance, the load demand will increase to increase the current supply, this further increases the power.
Thus, the mechanical power input will increase if both current and resistance will increase.
Conclusion:
Thus, the mechanical power input will increase if both current and resistance will increase.
Want to see more full solutions like this?
Chapter 31 Solutions
PHYSICS 1250 PACKAGE >CI<
- A piece of insulated wire is shaped into a figure eight as shown in Figure P23.12. For simplicity, model the two halves of the figure eight as circles. The radius of the upper circle is 5.00 cm and that of the lower circle is 9.00 cm. The wire has a uniform resistance per unit length of 3.00 Ω/m. A uniform magnetic field is applied perpendicular to the plane of the two circles, in the direction shown. The magnetic field is increasing at a constant rate of 2.00 T/s. Find (a) the magnitude and (b) the direction of the induced current in the wire. Figure P23.12arrow_forwardA metal rod is forced to move with constant velocity = 65.0 cm/s along two parallel metal rails, connected with a strip of metal at one end, as shown in the figure. A magnetic field B = 0.25 T points out of the page. The rails are seperated by 35.0 cm.What emf is generated? If the rod has a resistance of 18.0 Ω and the rails and connectors have negligible resistance, what is the current in the rod? At what rate is energy being tranferred to thermal energy?arrow_forwardA conducting rod of length ℓ = 35.0 cm is free to slide on two parallel conducting bars as shown in the figure below. Two resistors R1 = 2.00 Ω and R2 = 5.00 Ω are connected across the ends of the bars to form a loop. A constant magnetic field B = 2.90 T is directed perpendicularly into the page. An external agent pulls the rod to the left with a constant speed of v = 7.80 m/s. Find the following. a) the currents in both resistors b) the total power delivered to the resistance of the circuit c) the magnitude of the applied force that is needed to move the rod with this constant velocityarrow_forward
- A V = 36 mV battery is connected to a single turn loop of dimensions a 15 cm by b = 8 cm has a resistance of R = 25.5 2. The loop is placed in a uniform magnetic field which is perpendicular to the plane of the loop. If the magnetic field is increasing at a rate of 0.9 T/sec, what is the magnitude and direction of the current in the circuit? B x x V T X X www The magnitude, I = x X x R X The direction: Select an answer X X x x x X Units Select an answer ✓ X x X x ххarrow_forwardFigure P20.29 shows a bar of mass m = 0.200 kg that can slide without friction on a pair of rails separated by a distance ℓ = 1.20 m and located on an inclined plane that makes an angle 0 = 25.0° with respect to the ground. The resistance of the resistor is R = 1.00 Ω, and a uniform magnetic field of magnitude B = 0.500 T is directed downward, perpendicular to the ground, over the entire region through which the bar moves. With what constant speed v does the bar slide along the rails?arrow_forwardI got 0.1981686061 Varrow_forward
- In the figure below, a metal rod is forced to move with constant velocity along two parallel metal rails, connected with a strip of metal at one end. A magnetic field = 0.370 T points out of the page. (a) If the rails are separated by 28.0 cm and the speed of the rod is 70.0 cm/s, what emf is generated? V(b) If the rod has a resistance of 16.0 Ω and the rails and connector have negligible resistance, what is the current in the rod? (Include the sign, taking counterclockwise to be positive.) A(c) At what rate is energy being transferred to thermal energy? Warrow_forwardA 2.00 cm diameter, 14.0 cm long solenoid has 60.0 turns and has a 1.00 cm diameter loop inside it. The loop has a resistance of 0.400 Ω. What is the current in the loop at 0.00600 s? The the maximum and the minimum current in the graph have the same magnitude which is 3.60 A.arrow_forwardIn the figure (Figure 1) a conducting rod of length L = 31.0 cm moves in a magnetic field B of magnitude 0.480 T directed into the plane of the figure. The rod mc with speed v = 5.30 m/s in the direction shown. Figure X X X X X b X χαχ X X 1 of 1 X X X What is the potential difference between the ends of the rod? Express your answer in volts. NO | ΑΣΦΑ ▼ V = Submit Part B Which point, a or b, is at higher potential? b Submit Part C Request Answer E = Submit Request Answer When the charges in the rod are in equilibrium, what is the magnitude of the electric field with Express your answer in volts per meter. VG ΑΣΦΑ V Request Answer V/marrow_forward
- A conducting loop in Figure Q2(b) moves at a constant velocity, u = f10 m/s away from a long straight wire carrying current of 12 A. If resistances R = 50 2, determine the current I2. Please take note that the direction of Iz is as defined in the figure. R I =12 A 8 cm R 10 cm 6 cmarrow_forwardThe long straight wire in the figure has current I = 1 A flowing in it. A square loop which has 10-cm sides is positioned 10 cm away from the wire as shown. The loop is then moved in the positive x-direction with a speed v = 10 cm/s. If the loop has a resistance of 0.02 ohms, calculate the direction and the magnitude of the net force acting on the loop the instant the loop is made to move.arrow_forwardThe figure below shows a piece of insulated wire formed into the shape of a figure eight. You may consider the two loops of the figure eight to be circles, where the upper loop's radius is 3.00 cm and the lower loop's radius is 8.00 cm. The wire has a uniform resistance per unit length of 4.00 0/m. The wire lies in a plane that is perpendicular to a uniform magnetic field directed into the page, the magnitude of which is increasing at a constant rate of 2.50 T/s. (a) What is the magnitude of the induced current in the wire (in A)? A (b) Find the direction of the induced current in the wire. (Select all that apply.) O clockwise in the upper loop O clockwise in the lower loop O counterclockwise in the upper loop O counterclockwise in the lower looparrow_forward
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill