In Figure P30.26, a semicircular conductor of radius R = 0.250 m is rotated about the axis AC at a constant rate of 120 rev/min. A uniform magnetic field of magnitude 1.30 T fills the entire region below the axis and is directed out of the page. (a) Calculate the maximum value of the emf induced between the ends of the conductor. (b) What is the value of the average induced emf for each complete rotation? (c) What If? How would your answers to parts (a) and (b) change if the magnetic field were allowed to extend a distance R above the axis of rotation? Sketch the emf versus time (d) when the field is as drawn in Figure P30.26 and (e) when the field is extended as described in part (c). Figure P30.26
In Figure P30.26, a semicircular conductor of radius R = 0.250 m is rotated about the axis AC at a constant rate of 120 rev/min. A uniform magnetic field of magnitude 1.30 T fills the entire region below the axis and is directed out of the page. (a) Calculate the maximum value of the emf induced between the ends of the conductor. (b) What is the value of the average induced emf for each complete rotation? (c) What If? How would your answers to parts (a) and (b) change if the magnetic field were allowed to extend a distance R above the axis of rotation? Sketch the emf versus time (d) when the field is as drawn in Figure P30.26 and (e) when the field is extended as described in part (c). Figure P30.26
Solution Summary: The author calculates the induced emf between the ends of the conductor.
In Figure P30.26, a semicircular conductor of radius R = 0.250 m is rotated about the axis AC at a constant rate of 120 rev/min. A uniform magnetic field of magnitude 1.30 T fills the entire region below the axis and is directed out of the page. (a) Calculate the maximum value of the emf induced between the ends of the conductor. (b) What is the value of the average induced emf for each complete rotation? (c) What If? How would your answers to parts (a) and (b) change if the magnetic field were allowed to extend a distance R above the axis of rotation? Sketch the emf versus time (d) when the field is as drawn in Figure P30.26 and (e) when the field is extended as described in part (c).
You want to determine if a new material created for solar panels increases the amount of energy that can be captured . You have acquired 15 panels of different sizes manufactured with different materials including the new material.You decide to set up an experiment to solve this problem .What do you think are the 3 most important variables to address in your experience? How would you incorporate those materials in your experiment?
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
What is Electromagnetic Induction? | Faraday's Laws and Lenz Law | iKen | iKen Edu | iKen App; Author: Iken Edu;https://www.youtube.com/watch?v=3HyORmBip-w;License: Standard YouTube License, CC-BY