An L-R-C series circuit is constructed using a 175-Ω resistor, a 12.5- μ F capacitor, and an 8.00-mH inductor, all connected across an ac source having a variable frequency and a voltage amplitude of 25.0 V. (a) At what angular frequency will the impedance be smallest, and what is the impedance at this frequency? (b) At the angular frequency in part (a), what is the maximum current through the inductor? (c) At the angular frequency in part (a), find the potential difference across the ac source, the resistor, the capacitor, and the inductor at the instant that the current is equal to one-half its greatest positive value, (d) In part (c), how are the potential differences across the resistor, inductor, and capacitor related to the potential difference across the ac source?
An L-R-C series circuit is constructed using a 175-Ω resistor, a 12.5- μ F capacitor, and an 8.00-mH inductor, all connected across an ac source having a variable frequency and a voltage amplitude of 25.0 V. (a) At what angular frequency will the impedance be smallest, and what is the impedance at this frequency? (b) At the angular frequency in part (a), what is the maximum current through the inductor? (c) At the angular frequency in part (a), find the potential difference across the ac source, the resistor, the capacitor, and the inductor at the instant that the current is equal to one-half its greatest positive value, (d) In part (c), how are the potential differences across the resistor, inductor, and capacitor related to the potential difference across the ac source?
An L-R-C series circuit is constructed using a 175-Ω resistor, a 12.5-μF capacitor, and an 8.00-mH inductor, all connected across an ac source having a variable frequency and a voltage amplitude of 25.0 V. (a) At what angular frequency will the impedance be smallest, and what is the impedance at this frequency? (b) At the angular frequency in part (a), what is the maximum current through the inductor? (c) At the angular frequency in part (a), find the potential difference across the ac source, the resistor, the capacitor, and the inductor at the instant that the current is equal to one-half its greatest positive value, (d) In part (c), how are the potential differences across the resistor, inductor, and capacitor related to the potential difference across the ac source?
What is the resistance (in (2) of a 27.5 m long piece of 17 gauge copper wire having a 1.150 mm diameter?
0.445
ΧΩ
Find the ratio of the diameter of silver to iron wire, if they have the same resistance per unit length (as they might in household wiring).
d.
Ag
dFe
= 2.47
×
Find the ratio of the diameter of silver to iron wire, if they have the same resistance per unit length (as they might in household wiring).
d
Ag
= 2.51
dFe
×
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.