
Pearson eText for Calculus & Its Applications -- Instant Access (Pearson+)
14th Edition
ISBN: 9780137400096
Author: Larry Goldstein, David Lay
Publisher: PEARSON+
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 3.1, Problem 29E
Find the equation of the tangent line to the curve
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
1. Abel's Theorem. The goal in this problem is to prove Abel's theorem by following a series of steps
(each step must be justified).
Theorem 0.1 (Abel's Theorem).
If y1 and y2 are solutions of the differential equation
y" + p(t) y′ + q(t) y = 0,
where p and q are continuous on an open interval, then the Wronskian is given by
W (¥1, v2)(t) = c exp(− [p(t) dt),
where C is a constant that does not depend on t. Moreover, either W (y1, y2)(t) = 0 for every t in I or
W (y1, y2)(t) = 0 for every t in I.
1. (a) From the two equations (which follow from the hypotheses),
show that
y" + p(t) y₁ + q(t) y₁ = 0 and y½ + p(t) y2 + q(t) y2 = 0,
2. (b) Observe that
Hence, conclude that
(YY2 - Y1 y2) + P(t) (y₁ Y2 - Y1 Y2) = 0.
W'(y1, y2)(t) = yY2 - Y1 y2-
W' + p(t) W = 0.
3. (c) Use the result from the previous step to complete the proof of the theorem.
2. Observations on the Wronskian. Suppose the functions y₁ and y2 are solutions to the differential
equation
p(x)y" + q(x)y' + r(x) y = 0
on an open interval I.
1. (a) Prove that if y₁ and y2 both vanish at the same point in I, then y₁ and y2 cannot form a
fundamental set of solutions.
2. (b) Prove that if y₁ and y2 both attain a maximum or minimum at the same point in I, then y₁ and
Y2 cannot form a fundamental set of solutions.
3. (c) show that the functions & and t² are linearly independent on the interval (−1, 1). Verify that
both are solutions to the differential equation
t² y″ – 2ty' + 2y = 0.
Then justify why this does not contradict Abel's theorem.
4. (d) What can you conclude about the possibility that t and t² are solutions to the differential
equation
y" + q(x) y′ + r(x)y = 0?
Question 4 Find an equation of
(a) The plane through the point (2, 0, 1) and perpendicular to the line x =
y=2-t, z=3+4t.
3t,
(b) The plane through the point (3, −2, 8) and parallel to the plane z = x+y.
(c) The plane that contains the line x = 1+t, y = 2 − t, z = 4 - 3t and is
parallel to the plane 5x + 2y + z = 1.
(d) The plane that passes through the point (1,2,3) and contains the line
x = 3t, y = 1+t, and z = 2-t.
(e) The plane that contains the lines L₁: x = 1 + t, y = 1 − t, z = 2t and
L2 : x = 2 − s, y = s, z = 2.
Chapter 3 Solutions
Pearson eText for Calculus & Its Applications -- Instant Access (Pearson+)
Ch. 3.1 - Consider the function y=(x+1)x. Differentiate y by...Ch. 3.1 - Prob. 2CYUCh. 3.1 - Differentiate the functions in Exercise 1-28....Ch. 3.1 - Differentiate the functions in Exercise 1-28....Ch. 3.1 - Differentiate the functions in Exercise 1-28....Ch. 3.1 - Differentiate the functions in Exercise 1-28....Ch. 3.1 - Differentiate the functions in Exercise 1-28....Ch. 3.1 - Differentiate the functions in Exercise 1-28. y=xxCh. 3.1 - Differentiate the functions in Exercise 1-28....Ch. 3.1 - Differentiate the functions in Exercise 1-28. y=[...
Ch. 3.1 - Differentiate the functions in Exercise 1-28....Ch. 3.1 - Differentiate the functions in Exercise 1-28....Ch. 3.1 - Differentiate the functions in Exercise 1-28....Ch. 3.1 - Differentiate the functions in Exercise 1-28....Ch. 3.1 - Differentiate the functions in Exercise 1-28....Ch. 3.1 - Differentiate the functions in Exercise 1-28....Ch. 3.1 - Differentiate the functions in Exercise 1-28....Ch. 3.1 - Differentiate the functions in Exercise 1-28....Ch. 3.1 - Differentiate the functions in Exercise 1-28....Ch. 3.1 - Prob. 18ECh. 3.1 - Differentiate the functions in Exercise 1-28....Ch. 3.1 - Differentiate the functions in Exercise 1-28....Ch. 3.1 - Differentiate the functions in Exercise 1-28. y=[...Ch. 3.1 - Differentiate the functions in Exercise 1-28....Ch. 3.1 - Differentiate the functions in Exercise 1-28....Ch. 3.1 - Differentiate the functions in Exercise 1-28....Ch. 3.1 - Differentiate the functions in Exercise 1-28....Ch. 3.1 - Differentiate the functions in Exercise 1-28....Ch. 3.1 - Differentiate the functions in Exercise 1-28....Ch. 3.1 - Differentiate the functions in Exercise 1-28....Ch. 3.1 - Find the equation of the tangent line to the curve...Ch. 3.1 - Find the equation of the tangent line to the curve...Ch. 3.1 - Find all x-coordinates of points (x,y) on the...Ch. 3.1 - Find the inflection points on the graph of...Ch. 3.1 - Find all x such that dydx=0, where...Ch. 3.1 - The graph of y=(x21)4(x2+1)5 is shown in Fig. 3....Ch. 3.1 - Find the point(s) on the graph of y=(x2+3x1)/x...Ch. 3.1 - Find the point(s) on the graph of y=(2x4+1)(x5)...Ch. 3.1 - Find d2ydx2. y=(x2+1)4Ch. 3.1 - Find d2ydx2. y=x2+1Ch. 3.1 - Find d2ydx2 y=xx+1Ch. 3.1 - Find d2ydx2 y=22+x2Ch. 3.1 - In Exercises 4144, a function h(x) is defined in...Ch. 3.1 - In Exercises 4144, a function h(x) is defined in...Ch. 3.1 - In Exercises 4144, a function h(x) is defined in...Ch. 3.1 - In Exercises 4144, a function h(x) is defined in...Ch. 3.1 - Volume An open rectangular box is 3 feet long and...Ch. 3.1 - Volume A closed rectangular box is to be...Ch. 3.1 - Prob. 47ECh. 3.1 - Prob. 48ECh. 3.1 - Average Revenue Let R(x) be the revenue received...Ch. 3.1 - Average Velocity Let s(t) be the number of miles a...Ch. 3.1 - Prob. 51ECh. 3.1 - Cost-Benefit of Emission Control A manufacturer...Ch. 3.1 - In Exercises 53 and 54, use the fact that at the...Ch. 3.1 - Prob. 54ECh. 3.1 - Prob. 55ECh. 3.1 - Prob. 56ECh. 3.1 - Prob. 57ECh. 3.1 - Prob. 58ECh. 3.1 - Prob. 59ECh. 3.1 - If f(x) and g(x) are differentiable functions such...Ch. 3.1 - If f(x) and g(x) are differentiable functions such...Ch. 3.1 - Prob. 62ECh. 3.1 - Let f(x)=1/x and g(x)=x3. Show that the product...Ch. 3.1 - Prob. 64ECh. 3.1 - Prob. 65ECh. 3.1 - Prob. 66ECh. 3.1 - Prob. 67ECh. 3.1 - Prob. 68ECh. 3.1 - Prob. 69ECh. 3.2 - Consider the function h(x)=(2x35)5+(2x35)4 Write...Ch. 3.2 - Consider the function h(x)=(2x35)5+(2x35)4 Compute...Ch. 3.2 - Prob. 3CYUCh. 3.2 - Compute f(g(x)), where f(x) and g(x) are the...Ch. 3.2 - Compute f(g(x)), where f(x) and g(x) are the...Ch. 3.2 - Compute f(g(x)), where f(x) and g(x) are the...Ch. 3.2 - Compute f(g(x)), where f(x) and g(x) are the...Ch. 3.2 - Each of following functions may be viewed as a...Ch. 3.2 - Each of following functions may be viewed as a...Ch. 3.2 - Each of following functions may be viewed as a...Ch. 3.2 - Each of following functions may be viewed as a...Ch. 3.2 - Each of following functions may be viewed as a...Ch. 3.2 - Each of following functions may be viewed as a...Ch. 3.2 - Differentiate the functions in Exercises 1120...Ch. 3.2 - Differentiate the functions in Exercises 1120...Ch. 3.2 - Differentiate the functions in Exercises 1120...Ch. 3.2 - Differentiate the functions in Exercises 1120...Ch. 3.2 - Differentiate the functions in Exercises 1120...Ch. 3.2 - Differentiate the functions in Exercises 1120...Ch. 3.2 - Differentiate the functions in Exercises 1120...Ch. 3.2 - Differentiate the functions in Exercises 1120...Ch. 3.2 - Differentiate the functions in Exercises 1120...Ch. 3.2 - Differentiate the functions in Exercises 1120...Ch. 3.2 - In Exercises 2126, a function h(x) is defined in...Ch. 3.2 - Prob. 22ECh. 3.2 - Prob. 23ECh. 3.2 - In Exercises 2126, a function h(x) is defined in...Ch. 3.2 - In Exercises 2126, a function h(x) is defined in...Ch. 3.2 - Prob. 26ECh. 3.2 - Sketch the graph of y=4x/(x+1)2,x1.Ch. 3.2 - Sketch the graph of y=2/(1+x2)Ch. 3.2 - Compute ddxf(g(x)), where f(x) and g(x) are...Ch. 3.2 - Compute ddxf(g(x)), where f(x) and g(x) are...Ch. 3.2 - Compute ddxf(g(x)), where f(x) and g(x) are...Ch. 3.2 - Compute ddxf(g(x)), where f(x) and g(x) are...Ch. 3.2 - Compute ddxf(g(x)), where f(x) and g(x) are...Ch. 3.2 - Compute ddxf(g(x)), where f(x) and g(x) are...Ch. 3.2 - Compute ddxf(g(x)), where f(x) and g(x) are...Ch. 3.2 - Compute ddxf(g(x)), where f(x) and g(x) are...Ch. 3.2 - Compute dydx using the chain rule in formula (1)....Ch. 3.2 - Compute dydx using the chain rule in formula (1)....Ch. 3.2 - Compute dydx using the chain rule in formula (1)....Ch. 3.2 - Compute dydxt=t0 y=x23x,x=t2+3,t0=0Ch. 3.2 - Compute dydxt=t0 y=(x22x+4)2,x=1t+1,t0=1Ch. 3.2 - Compute dydxt=t0 y=x+1x1,x=t24,t0=3Ch. 3.2 - Prob. 44ECh. 3.2 - Find the equation of the line tangent to the graph...Ch. 3.2 - Find the equation of the line tangent to the graph...Ch. 3.2 - Find the x- coordinate of all points on the curve...Ch. 3.2 - The function f(x)=x26x+10 has one relative minimum...Ch. 3.2 - Prob. 49ECh. 3.2 - Allometric Equation Many relations in biology are...Ch. 3.2 - Suppose that P, y and t are variables, where P is...Ch. 3.2 - Suppose that Q, x and y are variables, where Q is...Ch. 3.2 - Marginal Profit and Times Rate of Change When a...Ch. 3.2 - Marginal Cost and Time Rate of Change The cost of...Ch. 3.2 - A model for Carbon Monoxide Levels Ecologists...Ch. 3.2 - Profit A manufacturer of microcomputers estimates...Ch. 3.2 - Prob. 57ECh. 3.2 - Prob. 58ECh. 3.2 - If f(x) and g(x) are differentiable functions,...Ch. 3.2 - Prob. 60ECh. 3.2 - Effect of Stocks on Total Assets of a Company...Ch. 3.2 - Refer to Exercise 61. Use chain rule to find...Ch. 3.2 - Refer to Exercise 61. Find dxdt|t=2.5 and...Ch. 3.2 - Refer to Exercise 61. What was the maximum value...Ch. 3.2 - In an expression of the form f(g(x)), f(x) is...Ch. 3.3 - Solution can be found following the section...Ch. 3.3 - Solution can be found following the section...Ch. 3.3 - In Exercise 1-18, suppose that x and y are related...Ch. 3.3 - In Exercise 1-18, suppose that x and y are related...Ch. 3.3 - In Exercise 1-18, suppose that x and y are related...Ch. 3.3 - In Exercise 1-18, suppose that x and y are related...Ch. 3.3 - In Exercise 1-18, suppose that x and y are related...Ch. 3.3 - In Exercise 1-18, suppose that x and y are related...Ch. 3.3 - In Exercise 1-18, suppose that x and y are related...Ch. 3.3 - In Exercise 1-18, suppose that x and y are related...Ch. 3.3 - In Exercise 1-18, suppose that x and y are related...Ch. 3.3 - In Exercise 1-18, suppose that x and y are related...Ch. 3.3 - In Exercise 1-18, suppose that x and y are related...Ch. 3.3 - In Exercise 1-18, suppose that x and y are related...Ch. 3.3 - In Exercise 1-18, suppose that x and y are related...Ch. 3.3 - In Exercise 1-18, suppose that x and y are related...Ch. 3.3 - In Exercise 1-18, suppose that x and y are related...Ch. 3.3 - In Exercise 1-18, suppose that x and y are related...Ch. 3.3 - In Exercise 1-18, suppose that x and y are related...Ch. 3.3 - In Exercise 1-18, suppose that x and y are related...Ch. 3.3 - Use implicit differentiation of the equation in...Ch. 3.3 - Use implicit differentiation of the equation in...Ch. 3.3 - Use implicit differentiation of the equation in...Ch. 3.3 - Use implicit differentiation of the equation in...Ch. 3.3 - Use implicit differentiation of the equation in...Ch. 3.3 - Use implicit differentiation of the equation in...Ch. 3.3 - Find the equation of the tangent line to the graph...Ch. 3.3 - Find the equation of the tangent line to the graph...Ch. 3.3 - Slope of the Lemniscate The graph of...Ch. 3.3 - The graph of x4+2x2y2+y4=9x29y2 is a lemniscate...Ch. 3.3 - Marginal Rate of Substitution Suppose that x and y...Ch. 3.3 - Demand Equation Suppose that x and y represents...Ch. 3.3 - In Exercise 31 36, suppose that x and y are both...Ch. 3.3 - In Exercise 31 36, suppose that x and y are both...Ch. 3.3 - In Exercise 31 36, suppose that x and y are both...Ch. 3.3 - Prob. 34ECh. 3.3 - In Exercise 31 36, suppose that x and y are both...Ch. 3.3 - Prob. 36ECh. 3.3 - Prob. 37ECh. 3.3 - Prob. 38ECh. 3.3 - Demand Equation Suppose that the price p (in...Ch. 3.3 - Demand Equation Suppose that the price p (in...Ch. 3.3 - Advertising Affects Revenue The monthly...Ch. 3.3 - Rate of Change of Price Suppose that in Boston the...Ch. 3.3 - Related Rates Figure 7 shows a 10- foot ladder...Ch. 3.3 - Related Rates An airplane flying 390 feet per...Ch. 3.3 - Related Rates A baseball diamond is a 90- foot by...Ch. 3.3 - Related Rates A motorcyclist is driving over a...Ch. 3 - State the product rule and quotient rule.Ch. 3 - Prob. 2CCECh. 3 - Prob. 3CCECh. 3 - Prob. 4CCECh. 3 - Prob. 5CCECh. 3 - Prob. 6CCECh. 3 - Differentiate the following functions....Ch. 3 - Differentiate the following functions....Ch. 3 - Differentiate the following functions. y=x(x51)3Ch. 3 - Differentiate the following functions....Ch. 3 - Differentiate the following functions....Ch. 3 - Differentiate the following functions. y=xx+4Ch. 3 - Differentiate the following functions....Ch. 3 - Differentiate the following functions....Ch. 3 - Differentiate the following functions. y=x26xx2Ch. 3 - Differentiate the following functions. y=2x23xCh. 3 - Differentiate the following functions. y=(3x2x3)2Ch. 3 - Differentiate the following functions. y=x3+xx2xCh. 3 - Let f(x)=(3x+1)4(3x)5. Find all x such that...Ch. 3 - Let f(x)=x2+1x2+5. Find all x such that f(x)=0.Ch. 3 - Find the equation of the line tangent to the graph...Ch. 3 - Find the equation of the line tangent to the graph...Ch. 3 - Minimizing Area A botanical display is to be...Ch. 3 - Repeat Exercise 17, with the sidewalk on the...Ch. 3 - Cost function A store estimates that its cost when...Ch. 3 - Rate of Change of Taxes A company pays y dollars...Ch. 3 - In Exercise 21-23, find a formula for ddxf(g(x)),...Ch. 3 - In Exercise 21-23, find a formula for ddxf(g(x)),...Ch. 3 - In Exercise 21-23, find a formula for ddxf(g(x)),...Ch. 3 - In Exercise 24-26, find a formula for ddxf(g(x)),...Ch. 3 - In Exercise 24-26, find a formula for ddxf(g(x)),...Ch. 3 - In Exercise 24-26, find a formula for ddxf(g(x)),...Ch. 3 - In Exercise 27-29, find dydx, where y is a...Ch. 3 - In Exercise 27-29, find dydx, where y is a...Ch. 3 - In Exercise 27-29, find dydx, where y is a...Ch. 3 - In Exercises 30 32, find dydx, where y is a...Ch. 3 - In Exercises 30 32, find dydx, where y is a...Ch. 3 - In Exercises 30 32, find dydx, where y is a...Ch. 3 - Exercises 33 38 refer to the graphs of the...Ch. 3 - Exercises 33 38 refer to the graphs of the...Ch. 3 - Exercises 33 38 refer to the graphs of the...Ch. 3 - Exercises 33 38 refer to the graphs of the...Ch. 3 - Exercises 33 38 refer to the graphs of the...Ch. 3 - Exercises 33 38 refer to the graphs of the...Ch. 3 - Revenue Function The revenue, R, that a company...Ch. 3 - Amount of Drug Usage The amount, A, of anesthetics...Ch. 3 - The graph of x2/3+y2/3=8 is the astroid in Fig. 3...Ch. 3 - Slope of the Folium of Descartes The graph of...Ch. 3 - Slope of the Folium of Descartes The graph of...Ch. 3 - In Exercises 43-46, x and y are related by the...Ch. 3 - In Exercises 43-46, x and y are related by the...Ch. 3 - In Exercises 43-46, x and y are related by the...Ch. 3 - Cost Analysis and Production A factorys weekly...Ch. 3 - Use of Books at a Library A town library estimates...Ch. 3 - Demand equation Suppose that the price p and...Ch. 3 - Volume of an Oil Spill An offshore oil well is...Ch. 3 - Weight and Surface Area Animal physiologists have...Ch. 3 - Sales and Advertising Suppose that a kitchen...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Please find all values of x.arrow_forward3. Consider the initial value problem 9y" +12y' + 4y = 0, y(0) = a>0: y′(0) = −1. Solve the problem and find the value of a such that the solution of the initial value problem is always positive.arrow_forward5. Euler's equation. Determine the values of a for which all solutions of the equation 5 x²y" + axy' + y = 0 that have the form (A + B log x) x* or Ax¹¹ + Bä” tend to zero as a approaches 0.arrow_forward
- 4. Problem on variable change. The purpose of this problem is to perform an appropriate change of variables in order to reduce the problem to a second-order equation with constant coefficients. ty" + (t² − 1)y'′ + t³y = 0, 0arrow_forward4. Some psychologists contend that the number of facts of a certain type that are remembered after t hours is given by f(t)== 90t 951-90 Find the rate at which the number of facts remembered is changing after 1 hour and after 10 hours. Interpret.arrow_forward12:05 MA S 58 58. If f(x) = ci.metaproxy.org 25 2xon [0, 10] and n is a positive integer, then there is some Riemann sum Sthat equals the exact area under the graph of ƒ from x = Oto x = 10. 59. If the area under the graph of fon [a, b] is equal to both the left sum L, and the right sum Rfor some positive integer n, then fis constant on [a, b]. 60. If ƒ is a decreasing function on [a, b], then the area under the graph of fis greater than the left sum Land less than the right sum R₂, for any positive integer n. Problems 61 and 62 refer to the following figure showing two parcels of land along a river: River Parcel 2 Parcel 1 h(x) 500 ft 1,000 ft. Figure for 61 and 62 61. You want to purchase both parcels of land shown in the figure and make a quick check on their combined area. There is no equation for the river frontage, so you use the average of the left and right sums of rectangles covering the area. The 1,000-foot baseline is divided into 10 equal parts. At the end of each…arrow_forwardIf a snowball melts so that its surface area decreases at a rate of 10 cm²/min, find the rate (in cm/min) at which the diameter decreases when the diameter is 12 cm. (Round your answer to three decimal places.) cm/minarrow_forward1) let X: N R be a sequence and let Y: N+R be the squence obtained from x by di scarding the first meN terms of x in other words Y(n) = x(m+h) then X converges to L If and only is y converges to L- 11) let Xn = cos(n) where nyo prove D2-1 that lim xn = 0 by def. h→00 ii) prove that for any irrational numbers ther exsist asquence of rational numbers (xn) converg to S.arrow_forward4.2 Product and Quotient Rules 1. 9(x)=125+1 y14+2 Use the product and/or quotient rule to find the derivative of each function. a. g(x)= b. y (2x-3)(x-1) c. y== 3x-4 √xarrow_forward4.2 Product and Quotient Rules 1. Use the product and/or quotient rule to find the derivative of each function. 2.5 a. g(x)=+1 y14+2 √x-1) b. y=(2x-3)(x-:arrow_forward3. The total profit (in dollars) from selling x watches is P(x)=0.52x²-0.0002x². Find and interpret the following. a) P(100) b) P'(100)arrow_forward3. Find the slope and the equation of the tangent line to the graph of the given function at the given value of x. -4 f(x)=x-x³;x=2arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage

Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning

Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Implicit Differentiation Explained - Product Rule, Quotient & Chain Rule - Calculus; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=LGY-DjFsALc;License: Standard YouTube License, CC-BY