College Physics
1st Edition
ISBN: 9781938168000
Author: Paul Peter Urone, Roger Hinrichs
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 31, Problem 21CQ
Explain how a bound system can have less mass than its components. Why is this not observed classically say for a building made of bricks?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
V=
8
1. The mass of a neutron is 1.67 × 10-27 kg. Convert this to units of MeV/c²) Calculate
the velocity of neutrons required to perform neutron diffraction of a specific crystal,
whose interatomic spacing is of the order 2A. What is the total kinetic energy for
these neutrons? What is its relativistic energy?
2. From scattering experiments, it is found that the nuclear diameter is of the order of
10-15 m (1 fm). The energy of an electron in ẞ-decay experiment is of the order of
a few MeV. Use these data and the uncertainty principle to show that the electron
is not a constituent of the nucleus.
3. A free electron has wave function (x,t) = sin(kx - wt). Determine the electron's
de Broglie wavelength, momentum, kinetic energy and speed when k = 50 nm
4. Normalize the following wavefunctions
(a) (x) = sin (7); for a particle in a 1D box of length L.
L
(b) (r) = xe−z/2
(c) (x) = (x²/a²)+(ikx)
5. In a region of space, a particle with mass m and with zero energy has a time-
independent…
4. Typical measurements of the mass of a A particle (1230 MeV/c²) are shown in the figure. Although
the lifetime of the delta is much too short to measure directly, it can be calculated from the energy-
time uncertainty principle. Estimate the lifetime from the full width at half-maximum of the mass
measurement distribution shown.
25 MA
Le
1000 1100 1200 1300 1400 1500
Mass of the delta particle M/
Number of mass me amare
in each bin
Solve the given physics problem with proper and step by step solution and answer.
Chapter 31 Solutions
College Physics
Ch. 31 - Suppose the range for 5.0 MeVa ray is known to be...Ch. 31 - What is the difference between (rays and...Ch. 31 - Ionizing radiation interacts with matter by...Ch. 31 - What characteristics of radioactivity show it to...Ch. 31 - What is the source of the energy emitted in...Ch. 31 - Consider Figure 31.3. If an electric field is...Ch. 31 - Explain how an (particle can have a larger range...Ch. 31 - Arrange the following according to their ability...Ch. 31 - Often, when people have to work around radioactive...Ch. 31 - Is it possible for light emitted by a scintillator...
Ch. 31 - The weak and strong nuclear forces are basic to...Ch. 31 - Define and make clear distinctions between the...Ch. 31 - What are isotopes? Why do different isotopes of...Ch. 31 - Star Trek fans have often heard the term...Ch. 31 - What conservation law requires an electron’s...Ch. 31 - Neutrinos are experimentally determined to have an...Ch. 31 - What do the three types of beta decay have in...Ch. 31 - In a 3109 yearold rock that originally contained...Ch. 31 - Does the number of radioactive nuclei in a sample...Ch. 31 - Radioactivity depends on the nucleus and not the...Ch. 31 - Explain how a bound system can have less mass than...Ch. 31 - Spontaneous radioactive decay occurs only when the...Ch. 31 - To obtain the most precise value of BE from the...Ch. 31 - How does the finite range of the nuclear force...Ch. 31 - Why is the number of neutrons greater than the...Ch. 31 - A physics student caught breaking conservation...Ch. 31 - When a nucleus (decays, does the (particle move...Ch. 31 - The energy of 30.0 eV is required to ionize a...Ch. 31 - A particle of ionizing radiation creates 4000 ion...Ch. 31 - (a) Repeat Exercise 31.2, and convert the energy...Ch. 31 - Suppose a particle of ionizing radiation deposits...Ch. 31 - Verify that a 2.31017kg mass of water at normal...Ch. 31 - Find the length of a side of a cube having a mass...Ch. 31 - What is the radius of an (particle?Ch. 31 - Find the radius of a 238Pu nucleus. 238Pu is a...Ch. 31 - (a) Calculate the radius of 58Ni, one of the most...Ch. 31 - The unified atomic mass unit is defined to be...Ch. 31 - What is the ratio of the velocity of a (particle...Ch. 31 - If a 1.50cmthick piece of lead can absorb 90.0% of...Ch. 31 - The detail observable using a probe is limited by...Ch. 31 - (a) Show that if you assume the average nucleus is...Ch. 31 - What is the radio of the velocity of a 5.00MeV...Ch. 31 - (a) What is the kinetic energy in MeV of a ray...Ch. 31 - In the following eight problems, write the...Ch. 31 - In the following eight problems, write the...Ch. 31 - In the following eight problems, write the...Ch. 31 - In the following eight problems, write the...Ch. 31 - In the following eight problems, write the...Ch. 31 - In the following eight problems, write the...Ch. 31 - In the following eight problems, write the...Ch. 31 - In the following eight problems, write the...Ch. 31 - decay producing 137Ba. The parent nuclide is a...Ch. 31 - ( decay producing 90Y. The parent nuclide is a...Ch. 31 - decay producing 228Ra. The parent nuclide is...Ch. 31 - decay producing 208Pb. The parent nuclide is in...Ch. 31 - When an electron and position annihilate, both...Ch. 31 - Confirm That charge, electron family number, and...Ch. 31 - Confirm that charge, electron family number, and...Ch. 31 - Confirm that charge, electron family number, and...Ch. 31 - Confirm that charge, electron family number, and...Ch. 31 - A rare decay mode has been observed in which 222Ra...Ch. 31 - (a) Write the complete a decay equation for 226Ra....Ch. 31 - (a) Write the complete a decay equation for 249Cf....Ch. 31 - (a) Write the complete decay equation for the...Ch. 31 - (a) Write the complete decay equation for 90Sr,...Ch. 31 - Calculate the energy released in the + decay of...Ch. 31 - (a) Write the complete + decay equation for llC....Ch. 31 - (a) Calculate the energy released in the a decay...Ch. 31 - (a) Write the complete reaction equation for...Ch. 31 - (a) Write the complete reaction equation for...Ch. 31 - Data from the appendices and the periodic table...Ch. 31 - Data from the appendices and the periodic table...Ch. 31 - Data from the appendices and the periodic table...Ch. 31 - Data from the appendices and the periodic table...Ch. 31 - Data from the appendices and the periodic table...Ch. 31 - Data from the appendices and the periodic table...Ch. 31 - Data from the appendices and the periodic table...Ch. 31 - Data from the appendices and the periodic table...Ch. 31 - Data from the appendices and the periodic table...Ch. 31 - Data from the appendices and the periodic table...Ch. 31 - Data from the appendices and the periodic table...Ch. 31 - Data from the appendices and the periodic table...Ch. 31 - Data from the appendices and the periodic table...Ch. 31 - Data from the appendices and the periodic table...Ch. 31 - Data from the appendices and the periodic table...Ch. 31 - Data from the appendices and the periodic table...Ch. 31 - Data from the appendices and the periodic table...Ch. 31 - Data from the appendices and the periodic table...Ch. 31 - Data from the appendices and the periodic table...Ch. 31 - Data from the appendices and the periodic table...Ch. 31 - Data from the appendices and the periodic table...Ch. 31 - Data from the appendices and the periodic table...Ch. 31 - Data from the appendices and the periodic table...Ch. 31 - Data from the appendices and the periodic table...Ch. 31 - Data from the appendices and the periodic table...Ch. 31 - 2H is a loosely hound isotope of hydrogen. Called...Ch. 31 - 56Feis among the most tightly bound of all...Ch. 31 - 209Bi is the heaviest stable nuclide, and its BE/A...Ch. 31 - (a) Calculate BE/A for 235U, the rarer of the two...Ch. 31 - (a) Calculate BE/A for 12C. Stable and relatively...Ch. 31 - The fact that BE/A is greatest for A near 60...Ch. 31 - The purpose of this problem is to show in three...Ch. 31 - Unreasonable Results A particle physicist...Ch. 31 - Derive an approximate relationship between the...Ch. 31 - Integrated Concepts A 2.00T magnetic ?eld is...Ch. 31 - (a) Write the decay equation for the decay of...Ch. 31 - Unreasonable Results The relatively scarce...Ch. 31 - Unreasonable Results A physicist scatters (rays...Ch. 31 - Unreasonable Results A frazzled theoretical...Ch. 31 - Construct Your Own Problem Consider the decay of...
Additional Science Textbook Solutions
Find more solutions based on key concepts
What class of motion, natural or violent, did Aristotle attribute to motion of the Moon?
Conceptual Physics (12th Edition)
1. a. Can a vector have nonzero magnitude if a component is zero? If no, why not? If yes, give an example.
b. C...
College Physics: A Strategic Approach (3rd Edition)
25. The 100 kg block in FIGURE EX7.25 takes 6.0 s to reach the floor after being released from rest. What is th...
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
24. (Il) You buy a plastic dart gun, and being a clever physics student you decide to do a quick calculation to...
Physics: Principles with Applications
A mole of ideal monatomic gas at 0 and 1.00 atm is warmed up to expand isobarically to triple its volume. How ...
University Physics Volume 2
The velocity vector of the particle.
University Physics Volume 1
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Provide the answers in 90 minutes, and count as 2 questions if needed.arrow_forwardThe range of the nuclear strong force is believed to be about 1.2 x 10-15 m. An early theory of nuclear physics proposed that the particle that “mediates” the strong force (similar to the photon mediating the electromagnetic force) is the pion. Assume that the pion moves at the speed of light in the nucleus, and calculate the time ∆t it takes to travel between nucleons. Assume that the distance between nucleons is also about 1.2 x 10-15 m. Use this time ∆t to calculate the energy ∆E for which energy conservation is violated during the time ∆t. This ∆E has been used to estimate the mass of the pion. What value do you determine for the mass? Compare this value with the measured value of 135 MeV/c2 for the neutral pion.arrow_forwardSuppose that a muon neutrino and a muon antineutrino, both of which are just barely moving, encounter each other in space and completely annihilate to form two photons of equal energy. In view of the uncertainty about the mass of the muon neutrino (< 0.180 MeV/c²), what is the shortest wavelength Ao of light that could be emitted by the annihilation? Would the light be visible to the human eye? yes O no λο = marrow_forward
- Nuclear-powered rockets were researched for some years before safety concerns became paramount. (a) What fraction of a rocket's mass would have to be destroyed to get it into a low Earth orbit, neglecting the decrease in gravity? (Assume an orbital altitude of 250 km, and calculate both the kinetic energy (classical) and the gravitational potential energy needed.) (b) If the ship has a mass of 1.00105 kg (100 tons), what total yield nuclear explosion in tons of TNT is needed?arrow_forward(a) What is the uncertainty in the energy released in the decay of a due to its short lifetime? (b) What traction of the decay energy is this, noting that the decay mode is (so that all the mass is destroyed)?arrow_forwardWhat lifetime do you expect for an antineutron isolated from normal matter?arrow_forward
- The decay energy of a short-lived particle has an uncertainty of 1.0 MeV due to its short lifetime. What is the smallest lifetime it can have?arrow_forward(a) Estimate the mass of the luminous matter in the known universe, given there are 1011 galaxies, each containing 1011 stars of average mass 1.5 times that of our Sun. (b) How many protons (the most abundant nuclide) are there in this mates? (c) Estimate the total number of particles in the observable universe by multiplying the answer to (b) by two, since there is an electron for each proton, and then by 109, since there are far more particles (such as photons and neutrinos) in space than in luminous matter.arrow_forwardAnother component of the strong nuclear force is transmitted by the exchange of virtual Kmesons. Taking Kmesons to have an average mass of what is the approximate range at this component of the strong force?arrow_forward
- (a) What is the uncertainty in the energy released in the decay of a due to its short lifetime? (b) Is the uncertainty in 1his energy greater than or lees than the uncertainty in the mass of the tau neutrino? Discuss the source of the uncertainty.arrow_forwardIntegrated Concepts Plans for an accelerator that produces a secondary beam of Kmesons to scatter from nuclei, for the purpose of studying the strong force, call for them to have a kinetic energy of 500 MeV. (a) What would the relativistic quantity be for these particles? (b) How long would their average lifetime be in the laboratory? (c) How far could they travel in this time?arrow_forward(a) Verify from its quark composition that the particle could be an excited state of the proton. (b) There is a spread of about 100 MeV in the decay energy of the interpreted as uncertainty due to its short lifetime. What is its approximate lifetime? (c) Does its decay proceed via the strong or weak force?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill