Elementary Linear Algebra (MindTap Course List)
8th Edition
ISBN: 9781305658004
Author: Ron Larson
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 3.1, Problem 1E
The Determinant of a Matrix In Exercises 1-12, find the determinant of the matrix.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Use the graphs to find estimates for the solutions of the simultaneous equations.
21:46 MM
:
0 % sparxmaths.uk/studer
Sparx Maths
+
13
24,963 XP Andrey Roura
1A ✓
1B X
1C
1D
Summary
Bookwork code: 1B
歐
Calculator
not allowed
Write the ratio 3
: 1½ in its simplest form.
32
Menu
Use the graph to solve 3x2-3x-8=0
Chapter 3 Solutions
Elementary Linear Algebra (MindTap Course List)
Ch. 3.1 - The Determinant of a Matrix In Exercises 1-12,...Ch. 3.1 - The Determinant of a Matrix In Exercises 1-12,...Ch. 3.1 - The Determinant of a Matrix In Exercises 1-12,...Ch. 3.1 - The Determinant of a Matrix In Exercises 1-12,...Ch. 3.1 - The Determinant of a Matrix In Exercises 1-12,...Ch. 3.1 - The Determinant of a Matrix In Exercises 1-12,...Ch. 3.1 - The Determinant of a Matrix In Exercises 1-12,...Ch. 3.1 - Prob. 8ECh. 3.1 - Prob. 9ECh. 3.1 - Prob. 10E
Ch. 3.1 - The Determinant of a Matrix In Exercises 1-12,...Ch. 3.1 - The Determinant of a Matrix In Exercises 1-12,...Ch. 3.1 - Finding the Minors and Cofactors of a Matrix In...Ch. 3.1 - Finding the Minors and Cofactors of a Matrix In...Ch. 3.1 - Finding the Minors and Cofactors of a Matrix In...Ch. 3.1 - Finding the Minors and Cofactors of a Matrix In...Ch. 3.1 - Find the determinant of the matrix in Exercise 15...Ch. 3.1 - Find the determinant of the matrix in Exercise 16...Ch. 3.1 - Find a Determinant In Exercises 19-32, use...Ch. 3.1 - Find a Determinant In Exercises 19-32, use...Ch. 3.1 - Find a Determinant In Exercises 19-32, use...Ch. 3.1 - Find a Determinant In Exercises 19-32, use...Ch. 3.1 - Find a Determinant In Exercises 19-32, use...Ch. 3.1 - Prob. 24ECh. 3.1 - Find a Determinant In Exercises 19-32, use...Ch. 3.1 - Finding a determinant in Exercises 19-32, use...Ch. 3.1 - Finding a determinant in Exercises 19-32, use...Ch. 3.1 - Finding a determinant in Exercises 19-32, use...Ch. 3.1 - Finding a determinant in Exercises 19-32, use...Ch. 3.1 - Finding a determinant in Exercises 19-32, use...Ch. 3.1 - Finding a determinant in Exercises 19-32, use...Ch. 3.1 - Prob. 32ECh. 3.1 - Finding a Determinant in Exercises 33 and 34, use...Ch. 3.1 - Finding a Determinant in Exercises 33 and 34, use...Ch. 3.1 - Finding a Determinant In Exercises 35-38, use a...Ch. 3.1 - Prob. 36ECh. 3.1 - Prob. 37ECh. 3.1 - Prob. 38ECh. 3.1 - Finding the Determinant of a Triangular Matrix In...Ch. 3.1 - Finding the Determinant of a Triangular Matrix In...Ch. 3.1 - Finding the Determinant of a Triangular Matrix In...Ch. 3.1 - Finding the Determinant of a Triangular Matrix In...Ch. 3.1 - True or False ? a The determinant of a 22 matrix A...Ch. 3.1 - True or False ? a To find the determinant of a...Ch. 3.1 - Solving an Equation In Exercises 45-48, solve for...Ch. 3.1 - Prob. 46ECh. 3.1 - Solving an Equation In Exercises 45-48, solve for...Ch. 3.1 - Solving an Equation In Exercises 45-48, solve for...Ch. 3.1 - Solving an Equation In Exercises 4952, find the...Ch. 3.1 - Solving an Equation In Exercises 4952, find the...Ch. 3.1 - Solving an Equation In Exercises 49-52, find the...Ch. 3.1 - Solving an Equation In Exercises 49-52, find the...Ch. 3.1 - Show that the system of linear equations...Ch. 3.1 - Prob. 54ECh. 3.1 - Entries Involving Expressions In Exercises 55- 62,...Ch. 3.1 - Prob. 56ECh. 3.1 - Entries Involving Expressions In Exercises 55-62,...Ch. 3.1 - Prob. 58ECh. 3.1 - Entries Involving Expressions In Exercises 55- 62,...Ch. 3.1 - Prob. 60ECh. 3.1 - Prob. 61ECh. 3.1 - Prob. 62ECh. 3.1 - Verifying an Equation In Exercises 63-68, evaluate...Ch. 3.1 - Prob. 64ECh. 3.1 - Verify an Equation In Exercises 63-68, evaluate...Ch. 3.1 - Prob. 66ECh. 3.1 - Verifying an equation In Exercises 63-68, evaluate...Ch. 3.1 - Prob. 68ECh. 3.1 - You are given the equation |x0c1xb01a|=ax2+bx+c....Ch. 3.1 - The determinant of a 22 matrix involves two...Ch. 3.2 - Properties of Determinants In Exercises 1-20,...Ch. 3.2 - Properties of Determinants In Exercises 1-20,...Ch. 3.2 - Properties of Determinants In Exercises 1-20,...Ch. 3.2 - Properties of Determinants In Exercises 1-20,...Ch. 3.2 - Properties of Determinants In Exercises 1-20,...Ch. 3.2 - Prob. 6ECh. 3.2 - Properties of Determinants In Exercises 1-20,...Ch. 3.2 - Prob. 8ECh. 3.2 - Properties of Determinants In Exercises 1-20,...Ch. 3.2 - Prob. 10ECh. 3.2 - Properties of Determinants In Exercises 1-20,...Ch. 3.2 - Prob. 12ECh. 3.2 - Properties of Determinants In Exercises 1-20,...Ch. 3.2 - Properties of Determinants In Exercises 1-20,...Ch. 3.2 - Properties of Determinants In Exercises 1-20,...Ch. 3.2 - Prob. 16ECh. 3.2 - Properties of Determinants In Exercises 1-20,...Ch. 3.2 - Prob. 18ECh. 3.2 - Properties of Determinant In Exercises 1-20,...Ch. 3.2 - Properties of Determinants In Exercises 1-20,...Ch. 3.2 - Finding a Determinant In Exercises 2124, use...Ch. 3.2 - Finding a Determinant In Exercises 2124, use...Ch. 3.2 - Finding a Determinant In Exercises 2124, use...Ch. 3.2 - Prob. 24ECh. 3.2 - Finding a Determinant In Exercises 25-36, use...Ch. 3.2 - Prob. 26ECh. 3.2 - Finding a Determinant In Exercises 25-36, use...Ch. 3.2 - Prob. 28ECh. 3.2 - Finding a Determinant In Exercises 25-36, use...Ch. 3.2 - Finding a Determinant In Exercises 25-36, use...Ch. 3.2 - Finding a Determinant In Exercises 25-36, use...Ch. 3.2 - Finding a Determinant In Exercises 25-36, use...Ch. 3.2 - Finding a Determinant In Exercises 25-36, use...Ch. 3.2 - Prob. 34ECh. 3.2 - Finding a Determinant In Exercises 25-36, use...Ch. 3.2 - Prob. 36ECh. 3.2 - Prob. 37ECh. 3.2 - Prob. 38ECh. 3.2 - Finding the Determinant of an Elementary Matrix In...Ch. 3.2 - Finding the Determinant of an Elementary Matrix In...Ch. 3.2 - Finding the Determinant of an Elementary Matrix In...Ch. 3.2 - Finding the Determinant of an Elementary Matrix In...Ch. 3.2 - Proof Prove the property....Ch. 3.2 - Proof Prove the property....Ch. 3.2 - Find each determinant. a |cossinsincos| b...Ch. 3.2 - CAPSTONE Evaluate each determinant when a = 1, b =...Ch. 3.2 - Guided Proof Prove Property 2 of Theorem 3.3: When...Ch. 3.2 - Prob. 48ECh. 3.3 - The determinant of a matrix product In Exercises...Ch. 3.3 - The determinant of a matrix product In Exercises...Ch. 3.3 - The determinant of a matrix product In Exercises...Ch. 3.3 - The determinant of a matrix product In Exercises...Ch. 3.3 - The determinant of a matrix product In Exercises...Ch. 3.3 - Prob. 6ECh. 3.3 - The Determinant of a scalar multiple of a Matrix...Ch. 3.3 - Prob. 8ECh. 3.3 - The Determinant of a scalar multiple of a Matrix...Ch. 3.3 - Prob. 10ECh. 3.3 - The Determinant of a scalar multiple of a Matrix...Ch. 3.3 - The Determinant of a scalar multiple of a Matrix...Ch. 3.3 - The Determinant of a scalar multiple of a Matrix...Ch. 3.3 - Prob. 14ECh. 3.3 - The Determinant of a Matrix Sum In Exercises...Ch. 3.3 - Prob. 16ECh. 3.3 - The Determinant of a Matrix Sum In Exercises...Ch. 3.3 - Prob. 18ECh. 3.3 - Classifying Matrices as Singular or Nonsingular In...Ch. 3.3 - Prob. 20ECh. 3.3 - Classifying Matrices as Singular or Nonsingular In...Ch. 3.3 - Classifying Matrices as Singular or Nonsingular In...Ch. 3.3 - Classifying Matrices as Singular or Nonsingular In...Ch. 3.3 - Prob. 24ECh. 3.3 - The Determinant of a Matrix in Exercises 25-30,...Ch. 3.3 - The Determinant of a Matrix in Exercises 25-30,...Ch. 3.3 - The Determinant of a Matrix in Exercises 25-30,...Ch. 3.3 - The Determinant of a Matrix in Exercises 25-30,...Ch. 3.3 - The Determinant of a Matrix in Exercises 25-30,...Ch. 3.3 - Prob. 30ECh. 3.3 - System of Linear Equation In Exercises 31-36, use...Ch. 3.3 - System of Linear Equation In Exercises 31-36, use...Ch. 3.3 - System of Linear Equation In Exercises 31-36, use...Ch. 3.3 - System of Linear Equation In Exercises 31-36, use...Ch. 3.3 - Prob. 35ECh. 3.3 - Prob. 36ECh. 3.3 - Singular Matrices In Exercises 37-42, find the...Ch. 3.3 - Singular Matrices In Exercises 37-42, find the...Ch. 3.3 - Singular Matrices In Exercises 37-42, find the...Ch. 3.3 - Singular Matrices In Exercises 37-42, find the...Ch. 3.3 - Singular Matrices In Exercises 37-42, find the...Ch. 3.3 - Prob. 42ECh. 3.3 - Finding Determinants In Exercises 43-50, find...Ch. 3.3 - Prob. 44ECh. 3.3 - Finding Determinants In Exercises 43-50, find...Ch. 3.3 - Prob. 46ECh. 3.3 - Finding Determinants In Exercises 43-50, find...Ch. 3.3 - Prob. 48ECh. 3.3 - Finding Determinants In Exercises 43-50, find...Ch. 3.3 - Prob. 50ECh. 3.3 - Finding Determinants In Exercises 51-56, use a...Ch. 3.3 - Prob. 52ECh. 3.3 - Prob. 53ECh. 3.3 - Prob. 54ECh. 3.3 - Prob. 55ECh. 3.3 - Prob. 56ECh. 3.3 - Let A and B be square matrices of order 4 such...Ch. 3.3 - CAPSTONE Let A and B be square matrices of order 3...Ch. 3.3 - Proof Let A and B be nn matrices such that...Ch. 3.3 - Prob. 60ECh. 3.3 - Find two 22 matrices such that |A|+|B|=|A+B|.Ch. 3.3 - Prob. 62ECh. 3.3 - Let A be an nn matrix in which the entries of each...Ch. 3.3 - Illustrate the result of Exercise 63 with the...Ch. 3.3 - Guided Proof Prove that the determinant of an...Ch. 3.3 - Prob. 66ECh. 3.3 - Prob. 67ECh. 3.3 - Prob. 68ECh. 3.3 - Prob. 69ECh. 3.3 - Prob. 70ECh. 3.3 - Prob. 71ECh. 3.3 - Prob. 72ECh. 3.3 - Prob. 73ECh. 3.3 - Prob. 74ECh. 3.3 - Prob. 75ECh. 3.3 - Orthogonal Matrices in Exercises 73-78, determine...Ch. 3.3 - Prob. 77ECh. 3.3 - Prob. 78ECh. 3.3 - Prob. 79ECh. 3.3 - Prob. 80ECh. 3.3 - Prob. 81ECh. 3.3 - Prob. 82ECh. 3.3 - Proof If A is an idempotent matrix (A2=A), then...Ch. 3.3 - Prob. 84ECh. 3.4 - Finding the Adjoint and Inverse of a Matrix In...Ch. 3.4 - Prob. 2ECh. 3.4 - Finding the Adjoint and Inverse of a Matrix In...Ch. 3.4 - Finding the Adjoint and Inverse of a Matrix In...Ch. 3.4 - Finding the Adjoint and Inverse of a Matrix In...Ch. 3.4 - Prob. 6ECh. 3.4 - Prob. 7ECh. 3.4 - Finding the Adjoint and Inverse of a Matrix In...Ch. 3.4 - Using Cramers Rule In Exercises 9-22, use Cramers...Ch. 3.4 - Prob. 10ECh. 3.4 - Using Cramers Rule In Exercises 9-22, use Cramers...Ch. 3.4 - Prob. 12ECh. 3.4 - Prob. 13ECh. 3.4 - Prob. 14ECh. 3.4 - Prob. 15ECh. 3.4 - Prob. 16ECh. 3.4 - Using Cramers Rule In Exercises 9-22, use Cramers...Ch. 3.4 - Using Cramers Rule In Exercises 9-22, use Cramers...Ch. 3.4 - Using Cramers Rule In Exercises 9-22, use Cramers...Ch. 3.4 - Prob. 20ECh. 3.4 - Using Cramers Rule In Exercises 9-22, use Cramers...Ch. 3.4 - Prob. 22ECh. 3.4 - Prob. 23ECh. 3.4 - Prob. 24ECh. 3.4 - Prob. 25ECh. 3.4 - Prob. 26ECh. 3.4 - Use Cramers Rule to solve the system of linear...Ch. 3.4 - Verify the system of linear equations in cosA,...Ch. 3.4 - Finding the Area of a Triangle In Exercises 29-32,...Ch. 3.4 - Prob. 30ECh. 3.4 - Prob. 31ECh. 3.4 - Prob. 32ECh. 3.4 - Prob. 33ECh. 3.4 - Prob. 34ECh. 3.4 - Prob. 35ECh. 3.4 - Prob. 36ECh. 3.4 - Prob. 37ECh. 3.4 - Prob. 38ECh. 3.4 - Prob. 39ECh. 3.4 - Finding an Equation of a Line In Exercises 37-40,...Ch. 3.4 - Finding the Volume of a Tetrahedron In Exercises...Ch. 3.4 - Finding the Volume of a Tetrahedron In Exercises...Ch. 3.4 - Finding the Volume of a Tetrahedron In Exercises...Ch. 3.4 - Finding the Volume of a Tetrahedron In Exercises...Ch. 3.4 - Finding the Volume of a Tetrahedron In Exercises...Ch. 3.4 - Finding the Volume of a Tetrahedron In Exercises...Ch. 3.4 - Testing for Coplanar Points In Exercises 47-52,...Ch. 3.4 - Testing for Coplanar Points In Exercises 47-52,...Ch. 3.4 - Testing for Coplanar Points In exercises 47-52...Ch. 3.4 - Testing for Coplanar Points In exercises 47-52...Ch. 3.4 - Testing for Coplanar Points In exercises 47-52...Ch. 3.4 - Testing for Coplanar Points In exercises 47-52...Ch. 3.4 - Finding an equation of a plane In Exercises 53-58,...Ch. 3.4 - Finding an equation of a plane In Exercises 53-58,...Ch. 3.4 - Finding an equation of a plane In Exercises 53-58,...Ch. 3.4 - Finding an equation of a plane In Exercises 53-58,...Ch. 3.4 - Finding an equation of a plane In Exercises 53-58,...Ch. 3.4 - Finding an equation of a plane In Exercises 53-58,...Ch. 3.4 - Using Cramers Rule In Exercises 59 and 60,...Ch. 3.4 - Using Cramers Rule In Exercises 59 and 60,...Ch. 3.4 - Software Publishing The table shows the estimate...Ch. 3.4 - Prob. 62ECh. 3.4 - Prob. 63ECh. 3.4 - Prob. 64ECh. 3.4 - Prob. 65ECh. 3.4 - Prob. 66ECh. 3.4 - Prob. 67ECh. 3.4 - Prob. 68ECh. 3.4 - Prob. 69ECh. 3.4 - Prob. 70ECh. 3.CR - The Determinant of a Matrix In Exercises 1-18,...Ch. 3.CR - Prob. 2CRCh. 3.CR - Prob. 3CRCh. 3.CR - Prob. 4CRCh. 3.CR - Prob. 5CRCh. 3.CR - Prob. 6CRCh. 3.CR - Prob. 7CRCh. 3.CR - Prob. 8CRCh. 3.CR - Prob. 9CRCh. 3.CR - The Determinant of a Matrix In Exercises 1-18,...Ch. 3.CR - Prob. 11CRCh. 3.CR - Prob. 12CRCh. 3.CR - Prob. 13CRCh. 3.CR - Prob. 14CRCh. 3.CR - Prob. 15CRCh. 3.CR - Prob. 16CRCh. 3.CR - Prob. 17CRCh. 3.CR - Prob. 18CRCh. 3.CR - Properties of Determinants In Exercises 19-22,...Ch. 3.CR - Properties of Determinants In Exercises 19-22,...Ch. 3.CR - Prob. 21CRCh. 3.CR - Prob. 22CRCh. 3.CR - Prob. 23CRCh. 3.CR - Prob. 24CRCh. 3.CR - Prob. 25CRCh. 3.CR - Prob. 26CRCh. 3.CR - Prob. 27CRCh. 3.CR - Finding Determinants In Exercises 27 and 28, find...Ch. 3.CR - Prob. 29CRCh. 3.CR - Prob. 30CRCh. 3.CR - Prob. 31CRCh. 3.CR - The Determinant of the Inverse of a Matrix In...Ch. 3.CR - Prob. 33CRCh. 3.CR - Prob. 34CRCh. 3.CR - Solving a System of Linear Equations In Exercises...Ch. 3.CR - Solving a System of Linear Equations In Exercises...Ch. 3.CR - Prob. 37CRCh. 3.CR - Prob. 38CRCh. 3.CR - System of Linear Equation In Exercises 37-42, use...Ch. 3.CR - System of Linear Equation In Exercises 37-42, use...Ch. 3.CR - Prob. 41CRCh. 3.CR - Prob. 42CRCh. 3.CR - Let A and B be square matrices of order 4 such...Ch. 3.CR - Prob. 44CRCh. 3.CR - Prob. 45CRCh. 3.CR - Prob. 46CRCh. 3.CR - Prob. 47CRCh. 3.CR - Show that |a1111a1111a1111a|=(a+3)(a1)3Ch. 3.CR - Prob. 49CRCh. 3.CR - Prob. 50CRCh. 3.CR - Prob. 51CRCh. 3.CR - Prob. 52CRCh. 3.CR - Prob. 53CRCh. 3.CR - Prob. 54CRCh. 3.CR - Prob. 55CRCh. 3.CR - Prob. 56CRCh. 3.CR - Prob. 57CRCh. 3.CR - Prob. 58CRCh. 3.CR - Prob. 59CRCh. 3.CR - Prob. 60CRCh. 3.CR - Prob. 61CRCh. 3.CR - Prob. 62CRCh. 3.CR - Prob. 63CRCh. 3.CR - Prob. 64CRCh. 3.CR - Prob. 65CRCh. 3.CR - Using Cramers Rule In Exercises 65 and 66, use a...Ch. 3.CR - Prob. 67CRCh. 3.CR - Prob. 68CRCh. 3.CR - Prob. 69CRCh. 3.CR - Prob. 70CRCh. 3.CR - Prob. 71CRCh. 3.CR - Prob. 72CRCh. 3.CR - Prob. 73CRCh. 3.CR - Health Care Expenditures The table shows annual...Ch. 3.CR - Prob. 75CRCh. 3.CR - Prob. 76CRCh. 3.CR - True or False? In Exercises 75-78, determine...Ch. 3.CR - Prob. 78CRCh. 3.CM - Prob. 1CMCh. 3.CM - Prob. 2CMCh. 3.CM - In Exercises 3and4, use Gaussian elimination to...Ch. 3.CM - In Exercises 3and4, use Gaussian elimination to...Ch. 3.CM - Use a software program or a graphing utility to...Ch. 3.CM - Prob. 6CMCh. 3.CM - Solve the homogeneous linear system corresponding...Ch. 3.CM - Determine the values of k such that the system is...Ch. 3.CM - Solve for x and y in the matrix equation 2AB=I,...Ch. 3.CM - Find ATA for the matrix A=[531246]. Show that this...Ch. 3.CM - In Exercises 11-14, find the inverse of the matrix...Ch. 3.CM - In Exercises 11-14, find the inverse of the matrix...Ch. 3.CM - Prob. 13CMCh. 3.CM - In Exercises 11-14, find the inverse of the matrix...Ch. 3.CM - In Exercises 15 and 16, use an inverse matrix to...Ch. 3.CM - In Exercises 15 and 16, use an inverse matrix to...Ch. 3.CM - Find the sequence of the elementary matrices whose...Ch. 3.CM - Find the determinant of the matrix....Ch. 3.CM - Find a |A|, b |B|, c AB and d |AB| then verify...Ch. 3.CM - Find a |A| and b |A1| A=[523104682]Ch. 3.CM - If |A|=7 and A is of order 4. Then find each...Ch. 3.CM - Use the adjoint of A=[151021102] to find A1Ch. 3.CM - Let X1,X2,X3 and b be the column matrices below....Ch. 3.CM - Use a system of linear equation to find the...Ch. 3.CM - Use a determinant to find an equation of the line...Ch. 3.CM - Use a determinant to find the area of the triangle...Ch. 3.CM - Determine the currents I1I2 and I3 for the...Ch. 3.CM - A manufacture produce three models of a product...Ch. 3.CM - Prob. 29CM
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- Într-un bloc sunt apartamente cu 2 camere și apartamente cu 3 camere , în total 20 de apartamente și 45 de camere.Calculați câte apartamente sunt cu 2 camere și câte apartamente sunt cu 3 camere.arrow_forward1.2.19. Let and s be natural numbers. Let G be the simple graph with vertex set Vo... V„−1 such that v; ↔ v; if and only if |ji| Є (r,s). Prove that S has exactly k components, where k is the greatest common divisor of {n, r,s}.arrow_forwardQuestion 3 over a field K. In this question, MË(K) denotes the set of n × n matrices (a) Suppose that A Є Mn(K) is an invertible matrix. Is it always true that A is equivalent to A-¹? Justify your answer. (b) Let B be given by 8 B = 0 7 7 0 -7 7 Working over the field F2 with 2 elements, compute the rank of B as an element of M2(F2). (c) Let 1 C -1 1 [4] [6] and consider C as an element of M3(Q). Determine the minimal polynomial mc(x) and hence, or otherwise, show that C can not be diagonalised. [7] (d) Show that C in (c) considered as an element of M3(R) can be diagonalised. Write down all the eigenvalues. Show your working. [8]arrow_forward
- R denotes the field of real numbers, Q denotes the field of rationals, and Fp denotes the field of p elements given by integers modulo p. You may refer to general results from lectures. Question 1 For each non-negative integer m, let R[x]m denote the vector space consisting of the polynomials in x with coefficients in R and of degree ≤ m. x²+2, V3 = 5. Prove that (V1, V2, V3) is a linearly independent (a) Let vi = x, V2 = list in R[x] 3. (b) Let V1, V2, V3 be as defined in (a). Find a vector v € R[×]3 such that (V1, V2, V3, V4) is a basis of R[x] 3. [8] [6] (c) Prove that the map ƒ from R[x] 2 to R[x]3 given by f(p(x)) = xp(x) — xp(0) is a linear map. [6] (d) Write down the matrix for the map ƒ defined in (c) with respect to the basis (2,2x + 1, x²) of R[x] 2 and the basis (1, x, x², x³) of R[x] 3. [5]arrow_forwardQuestion 4 (a) The following matrices represent linear maps on R² with respect to an orthonormal basis: = [1/√5 2/√5 [2/√5 -1/√5] " [1/√5 2/√5] A = B = [2/√5 1/√5] 1 C = D = = = [ 1/3/5 2/35] 1/√5 2/√5 -2/√5 1/√5' For each of the matrices A, B, C, D, state whether it represents a self-adjoint linear map, an orthogonal linear map, both, or neither. (b) For the quadratic form q(x, y, z) = y² + 2xy +2yz over R, write down a linear change of variables to u, v, w such that q in these terms is in canonical form for Sylvester's Law of Inertia. [6] [4]arrow_forwardpart b pleasearrow_forward
- Question 5 (a) Let a, b, c, d, e, ƒ Є K where K is a field. Suppose that the determinant of the matrix a cl |df equals 3 and the determinant of determinant of the matrix a+3b cl d+3e f ГЪ e [ c ] equals 2. Compute the [5] (b) Calculate the adjugate Adj (A) of the 2 × 2 matrix [1 2 A = over R. (c) Working over the field F3 with 3 elements, use row and column operations to put the matrix [6] 0123] A = 3210 into canonical form for equivalence and write down the canonical form. What is the rank of A as a matrix over F3? 4arrow_forwardQuestion 2 In this question, V = Q4 and - U = {(x, y, z, w) EV | x+y2w+ z = 0}, W = {(x, y, z, w) € V | x − 2y + w − z = 0}, Z = {(x, y, z, w) € V | xyzw = 0}. (a) Determine which of U, W, Z are subspaces of V. Justify your answers. (b) Show that UW is a subspace of V and determine its dimension. (c) Is VU+W? Is V = UW? Justify your answers. [10] [7] '00'arrow_forwardTools Sign in Different masses and Indicated velocities Rotational inert > C C Chegg 39. The balls shown have different masses and speeds. Rank the following from greatest to least: 2.0 m/s 8.5 m/s 9.0 m/s 12.0 m/s 1.0 kg A 1.2 kg B 0.8 kg C 5.0 kg D C a. The momenta b. The impulses needed to stop the balls Solved 39. The balls shown have different masses and speeds. | Chegg.com Images may be subject to copyright. Learn More Share H Save Visit > quizlet.com%2FBoyE3qwOAUqXvw95Fgh5Rw.jpg&imgrefurl=https%3A%2F%2Fquizlet.com%2F529359992%2Fc. Xarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage Learning
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
HOW TO FIND DETERMINANT OF 2X2 & 3X3 MATRICES?/MATRICES AND DETERMINANTS CLASS XII 12 CBSE; Author: Neha Agrawal Mathematically Inclined;https://www.youtube.com/watch?v=bnaKGsLYJvQ;License: Standard YouTube License, CC-BY
What are Determinants? Mathematics; Author: Edmerls;https://www.youtube.com/watch?v=v4_dxD4jpgM;License: Standard YouTube License, CC-BY