Suppose the range for 5.0 MeVa ray is known to be 2.0 mm in a certain material. Does this mean that every 5.0 MeVa a ray that strikes this material travels 2.0 mm, or does the range have an average value with some statistical fluctuations in the distances traveled? Explain.
Suppose the range for 5.0 MeVa ray is known to be 2.0 mm in a certain material. Does this mean that every 5.0 MeVa a ray that strikes this material travels 2.0 mm, or does the range have an average value with some statistical fluctuations in the distances traveled? Explain.
Suppose the range for 5.0 MeVa ray is known to be 2.0 mm in a certain material. Does this mean that every 5.0 MeVa a ray that strikes this material travels 2.0 mm, or does the range have an average value with some statistical fluctuations in the distances traveled? Explain.
Expert Solution & Answer
To determine
Whether it means that every 5.0 MeVαray that strikes this material travels 2.0mm , or the range have an average value with some statistical fluctuations in the distances traveled, suppose the range for 5.0 MeVα ray is known to be 2.0mm in a certain material
Answer to Problem 1CQ
Every 5.0 MeVa a ray that strikes this material won't travel 2.0 mm.
Explanation of Solution
Concept Used:
Nuclear radioactivity.
The distance travel by the radiation through a material is defined as the range of the radiation. The range of radiation depends upon some of the factors which includes the energy of the radiation, the material through which it travels and the type of the radiation whether alpha, beta or gamma ray. By defining these factors or by knowing these factors we can know the range of the radiation. Here it is given that range of radiation is 2 mm for a certain material, But the charged particles in the material interacts with rays and because of that ray will show some random fluctuations, so every 5.0 MeVαray won't travel 2.0mm on the same material. In the α decay the energy released in it is about MeV range. It is about 106 for a typical chemical reaction. Most of the energy is converted in kinetic energy of the α particle which moves at high speed
Conclusion:
Thus, every 5.0 MeVa a ray that strikes this material won't travel 2.0 mm.
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
A planar double pendulum consists of two point masses \[m_1 = 1.00~\mathrm{kg}, \qquad m_2 = 1.00~\mathrm{kg}\]connected by massless, rigid rods of lengths \[L_1 = 1.00~\mathrm{m}, \qquad L_2 = 1.20~\mathrm{m}.\]The upper rod is hinged to a fixed pivot; gravity acts vertically downward with\[g = 9.81~\mathrm{m\,s^{-2}}.\]Define the generalized coordinates \(\theta_1,\theta_2\) as the angles each rod makes with thedownward vertical (positive anticlockwise, measured in radians unless stated otherwise).At \(t=0\) the system is released from rest with \[\theta_1(0)=120^{\circ}, \qquad\theta_2(0)=-10^{\circ}, \qquad\dot{\theta}_1(0)=\dot{\theta}_2(0)=0 .\]Using the exact nonlinear equations of motion (no small-angle or planar-pendulumapproximations) and assuming the rods never stretch or slip, determine the angle\(\theta_2\) at the instant\[t = 10.0~\mathrm{s}.\]Give the result in degrees, in the interval \((-180^{\circ},180^{\circ}]\).
What are the expected readings of the ammeter and voltmeter for the circuit in the figure below? (R = 5.60 Ω, ΔV = 6.30 V)
ammeter
I =
simple diagram to illustrate the setup for each law- coulombs law and biot savart law
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.