Neutrinos are experimentally determined to have an extremer small mass. Huge numbers of neutrinos are created in a supernova at the same time as massive amounts at light ate ?rst produced. When the 1987A supernova occurred in the Large Magellanic Cloud, visible primarily in the Southern Hemisphere and some 100,000 light−years away from Earth, neutrinos from the explosion were observed at about the same time as the light from the blast. How could the relative arrival times of neutrinos and light be used to place limits on the mass of neutrinos?
Neutrinos are experimentally determined to have an extremer small mass. Huge numbers of neutrinos are created in a supernova at the same time as massive amounts at light ate ?rst produced. When the 1987A supernova occurred in the Large Magellanic Cloud, visible primarily in the Southern Hemisphere and some 100,000 light−years away from Earth, neutrinos from the explosion were observed at about the same time as the light from the blast. How could the relative arrival times of neutrinos and light be used to place limits on the mass of neutrinos?
Neutrinos are experimentally determined to have an extremer small mass. Huge numbers of neutrinos are created in a supernova at the same time as massive amounts at light ate ?rst produced. When the 1987A supernova occurred in the Large Magellanic Cloud, visible primarily in the Southern Hemisphere and some 100,000 light−years away from Earth, neutrinos from the explosion were observed at about the same time as the light from the blast. How could the relative arrival times of neutrinos and light be used to place limits on the mass of neutrinos?
Truck suspensions often have "helper springs" that engage at high loads. One such arrangement is a leaf spring with a helper coil spring mounted on the axle, as shown in the figure below. When the main leaf spring is compressed by distance yo, the helper spring engages and then helps to
support any additional load. Suppose the leaf spring constant is 5.05 × 105 N/m, the helper spring constant is 3.50 × 105 N/m, and y = 0.500 m.
Truck body
yo
Main leaf
spring
-"Helper"
spring
Axle
(a) What is the compression of the leaf spring for a load of 6.00 × 105 N?
Your response differs from the correct answer by more than 10%. Double check your calculations. m
(b) How much work is done in compressing the springs?
☑
Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. J
A spring is attached to an inclined plane as shown in the figure. A block of mass m = 2.71 kg is placed on the incline at a distance d = 0.285 m along the incline from the end of the spring. The block is given a quick shove and moves down the incline with an initial speed v = 0.750 m/s. The
incline angle is = 20.0°, the spring constant is k = 505 N/m, and we can assume the surface is frictionless. By what distance (in m) is the spring compressed when the block momentarily comes to rest?
m
m
0
k
wwww
A block of mass m = 2.50 kg situated on an incline at an angle of
k=100 N/m
www
50.0° is connected to a spring of negligible mass having a spring constant of 100 N/m (Fig. P8.54). The pulley and incline are frictionless. The block is released from rest with the spring initially unstretched.
Ө
m
i
(a) How far does it move down the frictionless incline before coming to rest?
m
(b) What is its acceleration at its lowest point?
Magnitude
m/s²
Direction
O up the incline
down the incline
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.