
Interpretation:
The stereochemistry of the following pericyclic reactions,
a) The thermal cyclization of a conjugated tetraene.
Concept introduction:
a) A pericyclic reaction is a concerted reaction that proceeds through a cyclic transition state. Pericyclic reactions are completely stereospecific; that is, a single stereoisomer of the reactant forms a single stereoisomer of the product. Various kind of stereochemistry occurs in pericyclic reaction.
Interpretation:
The stereochemistry of the following pericyclic reactions,
b) The photochemical cyclization of a conjugated tetraene.
Concept introduction:
b) When like phases of the p orbitals are on the same side of the molecule, the two orbitals must rotate in opposite directions—one clockwise and one counterclockwise. Rotation in opposite directions is said to be disrotatory.
Interpretation:
The stereochemistry of the following pericyclic reactions,
c) A photochemical [4 1 4] cycloaddition.
Concept introduction:
c) When like phases of the p orbitals are on opposite sides of the molecule, the two orbitals must rotate in the same direction—both clockwise or both counterclockwise. Rotation in the same direction is said to be conrotatory.
Interpretation:
The stereochemistry of the following pericyclic reactions,
d) A thermal [2 1 6] cycloaddition.
Concept introduction:
d) A suprafacial stereochemistry occurs when like phases of the p orbitals of both reactants are on the same side of the pie system, so that two bonding interactions result.
Interpretation:
The stereochemistry of the following pericyclic reactions,
e) A photochemical [3, 5] sigmatropic rearrangement.
Concept introduction:
e) An antarafacial stereochemistry occurs when one pie system must twist to align like phases of the p orbitals of the terminal carbons of the reactants.

Trending nowThis is a popular solution!

Chapter 30 Solutions
Study Guide with Student Solutions Manual for McMurry's Organic Chemistry, 9th
- A covalent bond is the result of the a) b) c) d) e) overlap of two half-filled s orbitals overlap of a half-filled s orbital and a half-filled p orbital overlap of two half-filled p orbitals along their axes parallel overlap of two half-filled parallel p orbitals all of the abovearrow_forwardCan the target compound at right be efficiently synthesized in good yield from the unsubstituted benzene at left? starting material target If so, draw a synthesis below. If no synthesis using reagents ALEKS recognizes is possible, check the box under the drawing area. Be sure you follow the standard ALEKS rules for submitting syntheses. + More... Note for advanced students: you may assume that you are using a large excess of benzene as your starting material. C T Add/Remove step X ноarrow_forwardWhich one of the following atoms should have the largest electron affinity? a) b) c) d) 으으 e) 1s² 2s² 2p6 3s¹ 1s² 2s² 2p5 1s² 2s² 2p 3s² 3p² 1s² 2s 2p 3s² 3p6 4s2 3ds 1s² 2s² 2p6arrow_forward
- All of the following are allowed energy levels except _. a) 3f b) 1s c) 3d d) 5p e) 6sarrow_forwardA student wants to make the following product in good yield from a single transformation step, starting from benzene. Add any organic reagents the student is missing on the left-hand side of the arrow, and any addition reagents that are necessary above or below the arrow. If this product can't be made in good yield with a single transformation step, check the box below the drawing area. Note for advanced students: you may assume that an excess of benzene is used as part of the reaction conditions. : ☐ + I X This product can't be made in a single transformation step.arrow_forwardPredict the major products of this organic reaction:arrow_forward
- Name the family to which each organic compound belongs. The first answer has been filled in for you. compound CH₂ || CH3-C-NH2 0 ။ CH3-C-CH₂ CH=O–CH=CH, CH₂ HO CH2-CH2-CH-CH3 family amine Darrow_forward1b. Br LOHarrow_forwardI would like my graphs checked please. Do they look right? Do I have iodine and persulfate on the right axis ?arrow_forward
