
Concept explainers
To write:
Cellular structures that are unique to plant cells.
Introduction
Some cellular structures like a cell wall, plastids, plasmodesmata, vacuole, and glyoxysome are unique to plant cells.

Explanation of Solution
Cell wall
The presence of a cell wall in plant cells distinguishes them from animal cells. It is a non-living structure that is secreted by the cell itself to protect its plasma membrane. Higher plants have cell walls made up of cellulose, hemicellulose, pectin as calcium or magnesium salts, lignin and suberin.
Cell wall consists of three layers, primary cell wall, middle lamella, and secondary cell wall. In flowering plants, primary cell wall show thickening by lignification. Lignin provides greater strength and elasticity to plants.
The cell wall acts as the skeleton in a plant cell. It provides mechanical strength and support to the cell. It also gives a definite shape and rigidity to all plant cells. The cell wall is freely permeable and allows water and substances in solution to enter and leave the cell without any hindrance. It prevents desiccation of the cells.
Plasmodesmata are long tube-like structures of cytoplasm that connect adjacent cells in plants. The cell walls have narrow pores known as pits through which the fine strands of plasmodesmata are able to pass. Intercellular connections of plasmodesmata allow the exchange of materials between the living cell contents.
Plastids are disc or oval-shaped cell organelles present only in plant cells and are absent in animal cells. There are three types of plastids such as chloroplasts, chromoplasts, and leucoplasts.
Chloroplasts are green colored plastids that possess the photosynthetic pigment chlorophyll and are involved in photosynthesis. Each chloroplast is made up of a double membrane envelope and a matrix. The inner membrane is arranged to form a membranous system of lamella and thylakoids. Thylakoids are stacked into structures called grana. Chlorophyll is located within grana. The non-thylakoid, homogenous, proteinaceous part of the matrix is called the stroma. It contains a number of enzymes involved in photosynthesis.
The chloroplasts trap solar energy and use it to manufacture food for the plant through the process of photosynthesis. Solar energy is converted into chemical energy of carbohydrate molecules.
Chromoplasts are plastids with a variety of colors like yellow, orange, purple or red. Chromoplasts provide color to the petals of flowers and fruits. Leucoplast is colorless or white in color and their function is to store food materials in the form of starch, lipids, and proteins.
Vacuoles are fluid-filled sacs like structures surrounded by a single membrane. Vacuoles are present in the cytoplasm of all plant cells. Plant vacuoles are large, permanent and distinct. They contain a variety of substances including carbohydrates, proteins, minerals, sugars, amino acids, pigments and dissolved
Glyoxysomes are single membrane-bound structure found in plants cell. They are found in some seed germinating plant cell and contains enzymes for the glyoxylate cycle.
Cell wall, plasmodesmata, plastids, vacuole, and glyoxysomes are some organelles that are unique to plant cells. Cell wall provides support and mechanical strength of the plants. Plasmodesmata connect adjacent cells in plants. Plastids (Chloroplast) are involved in photosynthesis. Vacuoles stores substances like carbohydrates and proteins. Glyoxysomes contains enzymes for the glyoxylate cycle.
Want to see more full solutions like this?
Chapter 30 Solutions
Inquiry Into Life
- When setting up a PCR reaction to act as a negative control for the surface protein A gene... Which primers will you add to the reaction mix? mecA primers, spa primers, mecA primers and spa primers, no primers What will you add in place of template? sterile water, MRSA DNA, Patient DNA, S. aureus DNAarrow_forwardDraft a science fair project for a 11 year old based on the human body, specifically the liverarrow_forwardYou generate a transgenic mouse line with a lox-stop-lox sequence upstream of a dominant-negative Notch fused to GFP. Upon crossing this mouse with another mouse line expressing ectoderm-specific Cre, what would you expect for the phenotype of neuronal differentiation in the resulting embryos?arrow_forward
- Hair follicle formation is thought to result from a reaction-diffusion mechanism with Wnt and its antagonist Dkk1. How is Dkk1 regulated by Wnt? Describe specific cis-regulatory elements and the net effect on Dkk1 expression.arrow_forwardLimetown S1E4 Transcript: E n 2025SP-BIO-111-PSNT1: Natu X Natural Selection in insects X + newconnect.mheducation.com/student/todo CA NATURAL SELECTION NATURAL SELECTION IN INSECTS (HARDY-WEINBERG LAW) INTRODUCTION LABORATORY SIMULATION A Lab Data Is this the correct allele frequency? Is this the correct genotype frequency? Is this the correct phenotype frequency? Total 1000 Phenotype Frequency Typica Carbonaria Allele Frequency 9 P 635 823 968 1118 1435 Color Initial Frequency Light 0.25 Dark 0.75 Frequency Gs 0.02 Allele Initial Allele Frequency Gs Allele Frequency d 0.50 0 D 0.50 0 Genotype Frequency Moths Genotype Color Moths Released Initial Frequency Frequency G5 Number of Moths Gs NC - Xarrow_forwardWhich of the following is not a sequence-specific DNA binding protein? 1. the catabolite-activated protein 2. the trp repressor protein 3. the flowering locus C protein 4. the flowering locus D protein 5. GAL4 6. all of the above are sequence-specific DNA binding proteinsarrow_forward
- Which of the following is not a DNA binding protein? 1. the lac repressor protein 2. the catabolite activated protein 3. the trp repressor protein 4. the flowering locus C protein 5. the flowering locus D protein 6. GAL4 7. all of the above are DNA binding proteinsarrow_forwardWhat symbolic and cultural behaviors are evident in the archaeological record and associated with Neandertals and anatomically modern humans in Europe beginning around 35,000 yBP (during the Upper Paleolithic)?arrow_forwardDescribe three cranial and postcranial features of Neanderthals skeletons that are likely adaptation to the cold climates of Upper Pleistocene Europe and explain how they are adaptations to a cold climate.arrow_forward
- Biology Questionarrow_forward✓ Details Draw a protein that is embedded in a membrane (a transmembrane protein), label the lipid bilayer and the protein. Identify the areas of the lipid bilayer that are hydrophobic and hydrophilic. Draw a membrane with two transporters: a proton pump transporter that uses ATP to generate a proton gradient, and a second transporter that moves glucose by secondary active transport (cartoon-like is ok). It will be important to show protons moving in the correct direction, and that the transporter that is powered by secondary active transport is logically related to the proton pump.arrow_forwarddrawing chemical structure of ATP. please draw in and label whats asked. Thank you.arrow_forward
- Human Anatomy & Physiology (11th Edition)BiologyISBN:9780134580999Author:Elaine N. Marieb, Katja N. HoehnPublisher:PEARSONBiology 2eBiologyISBN:9781947172517Author:Matthew Douglas, Jung Choi, Mary Ann ClarkPublisher:OpenStaxAnatomy & PhysiologyBiologyISBN:9781259398629Author:McKinley, Michael P., O'loughlin, Valerie Dean, Bidle, Theresa StouterPublisher:Mcgraw Hill Education,
- Molecular Biology of the Cell (Sixth Edition)BiologyISBN:9780815344322Author:Bruce Alberts, Alexander D. Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, Peter WalterPublisher:W. W. Norton & CompanyLaboratory Manual For Human Anatomy & PhysiologyBiologyISBN:9781260159363Author:Martin, Terry R., Prentice-craver, CynthiaPublisher:McGraw-Hill Publishing Co.Inquiry Into Life (16th Edition)BiologyISBN:9781260231700Author:Sylvia S. Mader, Michael WindelspechtPublisher:McGraw Hill Education





