EBK PHYSICS
5th Edition
ISBN: 8220103026918
Author: Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 30, Problem 98PP
To determine
The region of the electromagnetic spectrum in which peak frequency of the radiation emitted.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A LASIK vision correction system uses a laser that emits 10-ns-long pulses of light,
each with 2.5 mJ of energy. The laser is focused to a 0.85-mm-diameter circle.
a. What is the average power of each laser pulse in units of watts?
b. Determine the intensity of the laser light at the focus point.
c. What is the electric field amplitude of the laser light at the focus point?
A microwave oven produces electromagnetic radiation in the radio portion of the spectrum. These microwave photons are absorbed by water molecules, resulting in an increase in the molecules’ rotational energies. This added energy is transferred by heat to the surrounding food, which as a result becomes hot very quickly. If the energy absorbed by a water molecule is 1.0 × 10-5 eV, what is the corresponding wavelength of the microwave photons?
a. 1.22 GHz
b. 2.45 GHz
c. 4.90 GHz
d. 9.80 Hz
a. Write down an E(z,t) and a B(z,t) travelling wave of an EM wave in
terms of k and w. What are these constants and the speed of the
wave in terms of the wavelength A and the frequency f of the
wave?
b. What are the energy densities stored in an electric and a magnetic
field?
c. What is the total instantaneous energy stored per unit volume in a
region of space where there is an EM wave? Seeing that that e =
express this in terms of the B- field.
d. Express the Poynting vector in terms of the B- field.
e. What is the time averaged Poynting vector in terms of Eo or Bo (in
terms of Ems or Bms). What is the intensity / of the wave?
Chapter 30 Solutions
EBK PHYSICS
Ch. 30.1 - Prob. 1EYUCh. 30.2 - Prob. 2EYUCh. 30.3 - Prob. 3EYUCh. 30.4 - Prob. 4EYUCh. 30.5 - Prob. 5EYUCh. 30.6 - Prob. 6EYUCh. 30.7 - Prob. 7EYUCh. 30 - Prob. 1CQCh. 30 - Prob. 2CQCh. 30 - Prob. 3CQ
Ch. 30 - Prob. 4CQCh. 30 - Prob. 5CQCh. 30 - Prob. 6CQCh. 30 - Prob. 7CQCh. 30 - Prob. 8CQCh. 30 - Prob. 9CQCh. 30 - Prob. 10CQCh. 30 - Prob. 1PCECh. 30 - Prob. 2PCECh. 30 - Prob. 3PCECh. 30 - The Sun has a surface temperature of about 5800 K....Ch. 30 - Prob. 5PCECh. 30 - Prob. 6PCECh. 30 - (a) By what factor does the peak frequency change...Ch. 30 - Prob. 8PCECh. 30 - Prob. 9PCECh. 30 - Prob. 10PCECh. 30 - Prob. 11PCECh. 30 - Prob. 12PCECh. 30 - Prob. 13PCECh. 30 - Prob. 14PCECh. 30 - Prob. 15PCECh. 30 - Prob. 16PCECh. 30 - Prob. 17PCECh. 30 - Prob. 18PCECh. 30 - Prob. 19PCECh. 30 - Prob. 20PCECh. 30 - Prob. 21PCECh. 30 - Prob. 22PCECh. 30 - Prob. 23PCECh. 30 - Prob. 24PCECh. 30 - Prob. 25PCECh. 30 - Prob. 26PCECh. 30 - Prob. 27PCECh. 30 - Prob. 28PCECh. 30 - Prob. 29PCECh. 30 - Prob. 30PCECh. 30 - Prob. 31PCECh. 30 - Prob. 32PCECh. 30 - Prob. 33PCECh. 30 - Prob. 34PCECh. 30 - Prob. 35PCECh. 30 - BIO Owl Vision Owls have large, sensitive eyes for...Ch. 30 - Prob. 37PCECh. 30 - Prob. 38PCECh. 30 - Prob. 39PCECh. 30 - Prob. 40PCECh. 30 - Prob. 41PCECh. 30 - Prob. 42PCECh. 30 - Prob. 43PCECh. 30 - Prob. 44PCECh. 30 - Prob. 45PCECh. 30 - Prob. 46PCECh. 30 - Prob. 47PCECh. 30 - Prob. 48PCECh. 30 - Prob. 49PCECh. 30 - Prob. 50PCECh. 30 - Prob. 51PCECh. 30 - Prob. 52PCECh. 30 - Prob. 53PCECh. 30 - Prob. 54PCECh. 30 - Prob. 55PCECh. 30 - Prob. 56PCECh. 30 - Prob. 57PCECh. 30 - Prob. 58PCECh. 30 - Prob. 59PCECh. 30 - Prob. 60PCECh. 30 - Prob. 61PCECh. 30 - Prob. 62PCECh. 30 - Prob. 63PCECh. 30 - Prob. 64PCECh. 30 - Prob. 65PCECh. 30 - Prob. 66PCECh. 30 - Prob. 67PCECh. 30 - Prob. 68PCECh. 30 - Prob. 69PCECh. 30 - Prob. 70PCECh. 30 - Prob. 71PCECh. 30 - Prob. 72PCECh. 30 - Prob. 73PCECh. 30 - Prob. 74PCECh. 30 - Prob. 75PCECh. 30 - Prob. 76PCECh. 30 - Prob. 77PCECh. 30 - Prob. 78PCECh. 30 - Prob. 79PCECh. 30 - Prob. 80GPCh. 30 - Prob. 81GPCh. 30 - Prob. 82GPCh. 30 - Prob. 83GPCh. 30 - Prob. 84GPCh. 30 - Prob. 85GPCh. 30 - Prob. 86GPCh. 30 - Prob. 87GPCh. 30 - Prob. 88GPCh. 30 - Prob. 89GPCh. 30 - Prob. 90GPCh. 30 - Prob. 91GPCh. 30 - Prob. 92GPCh. 30 - Prob. 93GPCh. 30 - Prob. 94GPCh. 30 - Prob. 95GPCh. 30 - Prob. 96GPCh. 30 - Prob. 97PPCh. 30 - Prob. 98PPCh. 30 - Prob. 99PPCh. 30 - Prob. 100PPCh. 30 - Prob. 101PPCh. 30 - Prob. 102PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A certain 60.0-Hz ac power line radiates an electromagnetic wave having a maximum electric field strength of 13.0 kV/m. (a) What is the wavelength of this very-low-frequency electromagnetic wave? (b) What type of electromagnetic radiation is this wave (b) What is its maximum magnetic field strength?arrow_forwardProfessor Edward Ney was the founder of infrared astronomy at the University of Minnesota. In his later years, he wore an artificial pacemaker. Always an experimentalist, Ney often held a strong laboratory magnet near his chest to see what effect it had on his pacemaker. Perhaps he was using the magnet to throw switches that control different modes of operation. An admiring student (without an artificial pacemaker) thought it would be fun to imitate this great man by holding a strong magnet to his own chest. The natural pacemaker of the heart (known as the sinoatrial node) carries a current of about 0.5 mA. Estimate the magnetic force exerted on a natural pacemaker by a strong magnet held to the chest. How do you think the student might have felt during the experiment? Explain your geometric assumptions. Hints: See Table 30.1 (page 941) to estimate the magnetic field, and assume the field is roughly uniform. Use Figure P30.58 to estimate the size of the sinoatrial node; your heart is about the size of your fist. FIGURE P30.58arrow_forwardreaches the ground with an intensity of about 1.0kW/m2 . A sunbather has a body surface area of 0.8 m2 facing the sun while reclining on a beach chair on a clear day. (a) how much energy from direct sunlight reaches the sunbather’s skin per second? (b) What pressure does the sunlight exert if it is absorbed?arrow_forward
- (a) What is the wavelength of a 1.00-eV photon? (b) Find its frequency in hertz. (c) Identify the type of EM radiation.arrow_forwardIf you wish to detect details of the size of atoms (about 0.2 nm) with electromagnetic radiation, it must have a wavelength of about this size. (a) What is its frequency? (b) What type of electromagnetic radiation might this be?arrow_forwarda. Determine the frequency of electromagnetic radiation which would have a wavelength of 1.0 mile (1.6 km).b. What part of the electromagnetic spectrum does this fall within?arrow_forward
- (6) Please don't write on a paper. I can't understand handwritten. Find the force exerted by reflecting sunlight off a reflecting aluminum sheet in space if the area normal to the sunlight is 300,000 cm² and the solar intensity is 1350 W/m². a. 1.35E10 N b. 1.35E-4 N c. 1.50E-7 N d. 6.67E6 Narrow_forwardAssume the radiation from a heat lamp is monochromatic, with a wavelength of 1.5 μm . I =3.313 kW/m^2. a. What is the peak electric field strength, in kilovolts per meter? b. Find the peak magnetic field strength, in microtesla. c. How long, in seconds, will it take to increase the temperature of the 3.95-kg shoulder by 2.00°C, assuming that the shoulder absorbs all the radiation from the lamp and given that its specific heat is 3.47 × 103 J/(kg⋅°C)?arrow_forward1. List the following types of electromagnetic radiation in order of increasing wavelength: visible light (v), infrared light (i), ultraviolet light (u), gamma rays (g), tv signals (t), x-rays (x), and microwaves (m). A. g,t,x,v,i,u B. t,x,g,i,u,v C. v,u,i,g,x,t D. g,x,u,v,i,tarrow_forward
- A. What is the energy of a 194.0MHz radio-frequency photon? B. What is the energy of a visible-light photon with a wavelength of 611.0nm? C. What is the energy of an x-ray photon with a wavelength of 0.236nm?arrow_forwardWhich of the following is true about electromagnetic radiation? a. Wavelength is proportional to frequency. b. Wavelength has units of s-1 or Hz. c. None of these statements are true. d. Wavelength is inversely proportional to energy. e. Waves of different wavelengths travel at different speeds in a vacuum.arrow_forwardLaser Safety A 0.95 mW laser emits a narrow beam of light that enters the eye. d=5.0 um a. How much energy is absorbed by the eye in 0.20 s? b. The eye focuses this beam to a tiny spot on the retina, perhaps 5.0 μm in diameter. What is the average intensity of light at this spot?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning