EBK PHYSICS
5th Edition
ISBN: 8220103026918
Author: Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 30, Problem 3PCE
To determine
The most intense radiation emitted by the earth into the outer space.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
#2
The temperature of a student's skin is 33.0°C. At what wavelength does the radiation emitted from the skin reach its peak?
um
rent Attempt in Progress
Multiple-Concept Example 5 provides some pertinent background for this problem. The mean distance between earth and the sun is
1.50 x 1011 m. The average intensity of solar radiation incident on the upper atmosphere of the earth is 1390 W/m2. Assuming the sun
emits radiation uniformly in all directions, determine the total power radiated by the sun.
i
Textbook and Media
Chapter 30 Solutions
EBK PHYSICS
Ch. 30.1 - Prob. 1EYUCh. 30.2 - Prob. 2EYUCh. 30.3 - Prob. 3EYUCh. 30.4 - Prob. 4EYUCh. 30.5 - Prob. 5EYUCh. 30.6 - Prob. 6EYUCh. 30.7 - Prob. 7EYUCh. 30 - Prob. 1CQCh. 30 - Prob. 2CQCh. 30 - Prob. 3CQ
Ch. 30 - Prob. 4CQCh. 30 - Prob. 5CQCh. 30 - Prob. 6CQCh. 30 - Prob. 7CQCh. 30 - Prob. 8CQCh. 30 - Prob. 9CQCh. 30 - Prob. 10CQCh. 30 - Prob. 1PCECh. 30 - Prob. 2PCECh. 30 - Prob. 3PCECh. 30 - The Sun has a surface temperature of about 5800 K....Ch. 30 - Prob. 5PCECh. 30 - Prob. 6PCECh. 30 - (a) By what factor does the peak frequency change...Ch. 30 - Prob. 8PCECh. 30 - Prob. 9PCECh. 30 - Prob. 10PCECh. 30 - Prob. 11PCECh. 30 - Prob. 12PCECh. 30 - Prob. 13PCECh. 30 - Prob. 14PCECh. 30 - Prob. 15PCECh. 30 - Prob. 16PCECh. 30 - Prob. 17PCECh. 30 - Prob. 18PCECh. 30 - Prob. 19PCECh. 30 - Prob. 20PCECh. 30 - Prob. 21PCECh. 30 - Prob. 22PCECh. 30 - Prob. 23PCECh. 30 - Prob. 24PCECh. 30 - Prob. 25PCECh. 30 - Prob. 26PCECh. 30 - Prob. 27PCECh. 30 - Prob. 28PCECh. 30 - Prob. 29PCECh. 30 - Prob. 30PCECh. 30 - Prob. 31PCECh. 30 - Prob. 32PCECh. 30 - Prob. 33PCECh. 30 - Prob. 34PCECh. 30 - Prob. 35PCECh. 30 - BIO Owl Vision Owls have large, sensitive eyes for...Ch. 30 - Prob. 37PCECh. 30 - Prob. 38PCECh. 30 - Prob. 39PCECh. 30 - Prob. 40PCECh. 30 - Prob. 41PCECh. 30 - Prob. 42PCECh. 30 - Prob. 43PCECh. 30 - Prob. 44PCECh. 30 - Prob. 45PCECh. 30 - Prob. 46PCECh. 30 - Prob. 47PCECh. 30 - Prob. 48PCECh. 30 - Prob. 49PCECh. 30 - Prob. 50PCECh. 30 - Prob. 51PCECh. 30 - Prob. 52PCECh. 30 - Prob. 53PCECh. 30 - Prob. 54PCECh. 30 - Prob. 55PCECh. 30 - Prob. 56PCECh. 30 - Prob. 57PCECh. 30 - Prob. 58PCECh. 30 - Prob. 59PCECh. 30 - Prob. 60PCECh. 30 - Prob. 61PCECh. 30 - Prob. 62PCECh. 30 - Prob. 63PCECh. 30 - Prob. 64PCECh. 30 - Prob. 65PCECh. 30 - Prob. 66PCECh. 30 - Prob. 67PCECh. 30 - Prob. 68PCECh. 30 - Prob. 69PCECh. 30 - Prob. 70PCECh. 30 - Prob. 71PCECh. 30 - Prob. 72PCECh. 30 - Prob. 73PCECh. 30 - Prob. 74PCECh. 30 - Prob. 75PCECh. 30 - Prob. 76PCECh. 30 - Prob. 77PCECh. 30 - Prob. 78PCECh. 30 - Prob. 79PCECh. 30 - Prob. 80GPCh. 30 - Prob. 81GPCh. 30 - Prob. 82GPCh. 30 - Prob. 83GPCh. 30 - Prob. 84GPCh. 30 - Prob. 85GPCh. 30 - Prob. 86GPCh. 30 - Prob. 87GPCh. 30 - Prob. 88GPCh. 30 - Prob. 89GPCh. 30 - Prob. 90GPCh. 30 - Prob. 91GPCh. 30 - Prob. 92GPCh. 30 - Prob. 93GPCh. 30 - Prob. 94GPCh. 30 - Prob. 95GPCh. 30 - Prob. 96GPCh. 30 - Prob. 97PPCh. 30 - Prob. 98PPCh. 30 - Prob. 99PPCh. 30 - Prob. 100PPCh. 30 - Prob. 101PPCh. 30 - Prob. 102PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The evaporation of perspiration is the primary mechanism for cooling the human body. Estimate the amount of water you will lose when you bake in the sun on the beach for an hour. Use a value of 1 000 W/m2 for the intensity of sun-light and note that the energy required to evaporate a liquid at a particular temperature is approximately equal to the sum of the energy required to raise its temperature to the boiling point and the latent heat of vaporization (determined at the boiling point).arrow_forwardThe temperature of human skin is approximately 34°C. Calculate the peak wavelength of the radiation emitted from the skin.arrow_forwardTwo stars, A and B, have the same emissivity, but the radii and surface temperatures are different with RA = 0.5RB, and TA = 2TB. Assuming the temperature of space to be negligible, which star radiates the most energy per unit time? a. Star Ab. Star Bc. Both radiate the same amount of energy per unit time.d. More information is needed in order to make a determination.arrow_forward
- The maximum intensity of radiation emitted by a star occurs at a surface temperature of 4.3 x 104 K. a) Calculate the wavelength of the emitted radiation when the intensity is maximum. b) Calculate the ratio of the intensity radiated at a wavelength of 60.0 nm to the maximum intensity. Assume that the star radiates like an ideal blackbody.arrow_forwardSuppose a hot object radiates with the twice the intensity as the sun on earth, i.e. 2600W/m2. What is the energy density of this radiation?arrow_forwardA3#Estimate the power per unit area of thermal radiation emitted by the Sun.arrow_forward
- Thermal emission from forehead. Noncontact thermom- eters are used to quickly measure the temperature of a person, to monitor for fever from an infection. They measure the power of the radiation from a surface, usually the forehead, in the infrared range, which is just outside the visible light range. Skin has an emissivity & = 0.97. What is the total power (infrared and vis- ible) of the radiation per unit area when the temperature is (a) 97.0°F (a common early morning temper- ature), (b) 99.0°F (a common late afternoon temperature), and (c) 103°F (a temperature indicating infection)? ww 36.8arrow_forwardB2arrow_forwardFor a patient in a typical hospital setting, the most importantmechanism of heat loss is radiation. How does the power radiatedby a patient change when the skin temperature drops from 34 °Cto 33 °C, assuming no other changes?A. It’s now 99% of what it originally was.B. It’s now 97% of what it originally was.C. It’s now 89% of what it originally was.D. It doesn’t change.arrow_forward
- 2. Light bulbs operate at about 3000K. a. What is this temperature in Celsius?b. What is the wavelength at which the most power is emitted for a light bulb operating at 2500 K?c. What is the total power density—the intensity—radiated by a light bulb operating at 2500 K?d. What is the wavelength at which the most power is emitted for a light bulb operating at 3000 K?e. What is the total power density—the intensity—radiated by a light bulb operating at 2500 K?f. What is the ratio between the power densities emitted at 500 nm (green light—the middle of the visible light spectrum) at 2500 K to the power density emitted at 500 nm at 3000 K? Submit QuestionQuestion 2arrow_forwardQuestion A7 The intensity of the emitted radiation by a star is at a maximum at a wavelength of 78.9 nm. a) Calculate the surface temperature of the star. b) Calculate the ratio of the intensity radiated at 65.0 nm to the maximum intensity. Assume that the star radiates like an ideal blackbody.arrow_forward1. A sphere of surface area 100 m and temperature 500 K radiates 0.2 MW. Calculate: a. The emissivity of the surface. b. The peak wavelength of radiation emitted. C. The intensity at a distance of 100m from the centre. d. The energy absorbed per second by a 2m disc with albedo 0.6 placed with it's plane perpendicular to the direction of the radiation. e. The temperature of the disc when it reaches equilibrium (emissivity of the disc = 1). P= eAoT A = 0.00289/T G- 5.67 x 10* Wm°K* Page 1 1 1 Q +arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning