Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
5th Edition
ISBN: 9781133422013
Author: Raymond A. Serway; John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 30, Problem 7P
To determine
The radius of the neutron star.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
One of the end stages of stellar life is a neutron star, where matter collapses and electrons combine with protons to form neutrons. Some liken neutron stars to a single gigantic nucleus.
Calculate the radius in meters of a neutron star with a mass 3.34 x 1030 kg, treating it as a giant nucleus.
Consider the mass of a nucleon 1.675 x 10-27 kg.
Your answer should be in the form of N x 104 years.
An Erbium-166 nucleus contains 68 protons. The atomic mass of a
neutral Erbium-166 atom is 165.930u, where u = 931.5 MeV/c². In
this question you may use that the mass of a proton is 938.27 MeV/c²,
the mass of a neutron is 939.57 MeV/e² and the mass of an electron
is 0.511 MeV/c².
i. Calculate the nuclear binding energy per nucleon, giving your
answer in units of MeV.
ii. Electrons with an energy of 0.5 GeV are scattered off the nucleus.
Estimate the scattering angle of the first minimum in the resulting
diffraction pattern.
iii. Briefly comment on whether or not you expect this nucleus to be
spherical, and what consequence this has for excited states of
the nucleus in the collective model.
A new element has been created artificially. It is named Elementy McFacium. The most common isotope of McFacium has 153 protons and 277 neutrons. The mass of this isotope of the new element is 402,188.91 MeV/c^2. What is the total mass deficit for the nucleus? Hint: The new element is not made as an ion! Use the mass of hydrogen atoms instead of protons.
(Answer in atomic mass units u)
Chapter 30 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
Ch. 30.1 - Prob. 30.1QQCh. 30.1 - Prob. 30.2QQCh. 30.3 - Prob. 30.3QQCh. 30.3 - Suppose you have a pure radioactive material with...Ch. 30.4 - Which of the following is the correct daughter...Ch. 30.4 - Which of the following is the correct daughter...Ch. 30 - Prob. 1OQCh. 30 - Prob. 2OQCh. 30 - Prob. 3OQCh. 30 - Prob. 4OQ
Ch. 30 - Prob. 5OQCh. 30 - Prob. 6OQCh. 30 - Prob. 7OQCh. 30 - Prob. 8OQCh. 30 - Prob. 9OQCh. 30 - Prob. 10OQCh. 30 - Which of the following quantities represents the...Ch. 30 - Prob. 12OQCh. 30 - Prob. 1CQCh. 30 - Prob. 2CQCh. 30 - Prob. 3CQCh. 30 - Prob. 4CQCh. 30 - Prob. 5CQCh. 30 - Prob. 6CQCh. 30 - Prob. 7CQCh. 30 - If no more people were to be born, the law of...Ch. 30 - Prob. 9CQCh. 30 - Prob. 10CQCh. 30 - Prob. 11CQCh. 30 - What fraction of a radioactive sample has decayed...Ch. 30 - Prob. 13CQCh. 30 - Prob. 14CQCh. 30 - Prob. 15CQCh. 30 - Prob. 16CQCh. 30 - Prob. 17CQCh. 30 - Prob. 1PCh. 30 - Prob. 2PCh. 30 - Prob. 3PCh. 30 - Prob. 4PCh. 30 - Prob. 5PCh. 30 - Prob. 6PCh. 30 - Prob. 7PCh. 30 - Prob. 8PCh. 30 - Prob. 9PCh. 30 - Prob. 10PCh. 30 - Prob. 11PCh. 30 - Prob. 12PCh. 30 - Prob. 13PCh. 30 - Prob. 14PCh. 30 - Prob. 16PCh. 30 - Prob. 17PCh. 30 - Prob. 18PCh. 30 - What time interval elapses while 90.0% of the...Ch. 30 - Prob. 20PCh. 30 - Prob. 21PCh. 30 - Prob. 22PCh. 30 - Prob. 23PCh. 30 - Prob. 24PCh. 30 - Prob. 25PCh. 30 - Prob. 26PCh. 30 - Prob. 27PCh. 30 - Prob. 28PCh. 30 - Prob. 29PCh. 30 - Prob. 30PCh. 30 - Prob. 31PCh. 30 - Prob. 32PCh. 30 - Prob. 33PCh. 30 - Prob. 34PCh. 30 - Prob. 35PCh. 30 - Prob. 36PCh. 30 - Prob. 37PCh. 30 - Prob. 38PCh. 30 - Prob. 39PCh. 30 - Prob. 41PCh. 30 - Prob. 42PCh. 30 - Prob. 43PCh. 30 - Prob. 45PCh. 30 - Prob. 46PCh. 30 - Prob. 47PCh. 30 - Prob. 48PCh. 30 - Prob. 49PCh. 30 - Prob. 50PCh. 30 - Prob. 51PCh. 30 - Prob. 52PCh. 30 - Prob. 53PCh. 30 - Prob. 54PCh. 30 - Prob. 55PCh. 30 - Prob. 56PCh. 30 - Prob. 57PCh. 30 - Prob. 58PCh. 30 - Prob. 59PCh. 30 - Prob. 60PCh. 30 - Prob. 61PCh. 30 - Prob. 62PCh. 30 - Prob. 63PCh. 30 - Prob. 64PCh. 30 - Prob. 65PCh. 30 - Prob. 66PCh. 30 - Prob. 67PCh. 30 - Prob. 68PCh. 30 - Prob. 69PCh. 30 - Prob. 70P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Enter the correct nuclide symbol in each open tan rectangle in Figure P43.25, which shows the sequences of decays in the natural radioactive series starting with the long-lived isotope uranium-235 and ending with the stable nucleus lead-207. Figure P43.25arrow_forward(a) Write the decay equation for the decay of 235U. (b) What energy is released in this decay? The mass of the daughter nuclide is 231.036298 u. (c) Assuming the residual nucleus is formed in its ground state, how much energy goes to the particle?arrow_forwardAt the end of its life, a star with a mass of two times the Sun’s mass is expected to collapse, combining its protons and electrons to form a neutron star. Such a star could be thought of as a gigantic atomic nucleus.If a star of mass 2 × 1.99 × 1030 kg collapsed into neutrons (mn = 1.67 × 10−27 kg), what would its radius be? Assume r = r0 A1/3.arrow_forward
- Don't use chat gptarrow_forwardGold-197 has an atomic number of 79 and an atomic mass number of 197. The mass of a gold nucleus is 196.96657 u, whereas the mass of a proton is 1.00727u and the mass of a neutron is 1.00866u. What is the binding energy of a gold nucleus, expressed in MeV? (Use c=3E8 m/s for the speed of light and beware of units)arrow_forwardPart A The proton-proton chain described in Section 43.8, known as the p-p I chain, accounts for 83,3% of the helium synthesis in the sun. This process uses six protons to produce one alpha particle, two protons, two neutrinos, and a least six gamma-ray photons. We can determine the energies of each of the products as follows. The first reaction, 2H →? H+ B+ +ve, is followed immediately by the annihilation of the positron by an electron into two photons, each with energy equal to the rest energy of an electron. What is the remaining energy Ej carried by the deuteron and the neutrino? Express your answer in megaelectron volts. V ΑΣφ E1 = MeV Figure 43.16 1 Two protons combine to form a deuteron (H) ... 3 A third proton combines with the deuteron, forming a helium nucleus (He) and emitting a gamma-ray photon. 4 Two He nuclei fusc, forming a 4He nucleus and releasing two protons. "He 3He ... as well as a positron (B*) and an electron neutrino (v). The proton-proton chain. The net effect…arrow_forward
- An iron nail has a mass of 9.0g. What is the energy (in Joules) that would be required to break all the iron nuclei into their constituent protons and neutrons? Ignore the energy that binds the electrons to the nucleus and the energy that binds one atom to another in the structure of the metal. For simplicity, assume that all the iron nuclei are Fe (atomic mass = 55.934 939 u). 26arrow_forwardA sample of radioactive nuclei has N0 nuclei at time t = 0. The half-life of the decay is T1/2. In terms of N0, how many decays occur in the time period between t = 0 and t = 0.500T1/2?arrow_forwardAt the end of its life, a star with a mass 7.8 times the Sun's mass is expected to collapse, combining its protons and electrons to form a neutron star. Such a star could be thought of as a gigantic atomic nucleus. If a star of mass 7.8 x 1.99 x 1030 kg collapsed into neutrons (m, = 1.67 x 10-27 kg), what would its radius be? Assume that r = rA/3. |km Need Help? Read Itarrow_forward
- Consider the following three atoms: Ar (protons = 18, neutrons = 21, atomic mass = 38.964313 u), K (protons = 19, neutrons = 20, atomic mass = 38.963707 u), and Ca (protons = 20, neutrons = 19, atomic mass = 38.970719 u). Which one is stable? How will the others decay? Will any of these nuclei decay by electron capture but not by B+ decay?arrow_forwardThe fission process in a reactor is represented by the equation below: U235 + n1 = La148+ Br85 + 3n1. If the elements in the above equation have the following atomic mass units (a.m.u ): U235 =235.124, n1 =1.009 La148= 147.96 and Br85 = 84.938. Given that mass of 1 a.m.u =1.67 x 10 -27 kg and 1.619 x 10-19 J = eV. 235g of Uranium contains 6.03 x 1023 atoms. a.Calculate the mass of Uranium atom that will be converted into heat energy by the fission process. b. Calculate the total amount of energy in MeV released during the fission process c.Calculate the amount of energy in J that can be obtained from one kilogramme of Uranium during a fission processarrow_forwardThe element 218Po (Polonium-218, Z = 84, atomic mass 218.008966 u) can decay through the emission of a β-particle to 218At (Astatine-218, Z = 85, atomic mass 218.00881 u). If all of the energy released is carried away by the β-particle's kinetic energy, calculate the kinetic energy of the β-particle.Give your answer in units of MeV, correct to two decimal places.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College