
Concept explainers
(a)
The number of carbon atoms in the given sample.
(a)

Answer to Problem 24P
The number of carbon atoms in the given sample is
Explanation of Solution
Write the equation to find the number of carbon atoms.
Here,
Conclusion:
Substitute
Therefore, the number of carbon atoms in the given sample is
(b)
The number of carbon atoms in the given sample.
(b)

Answer to Problem 24P
The number of carbon-14 atoms in the given sample is
Explanation of Solution
Write the equation to find the number of carbon-14 atoms.
Here,
Conclusion:
Substitute
Therefore, the number of carbon-14 atoms in the given sample is
(c)
The decay constant for carbon-14 in inverse seconds.
(c)

Answer to Problem 24P
The decay constant for carbon-14 in inverse seconds is
Explanation of Solution
Write the equation to find the half-life time of carbon-14.
Here,
Conclusion:
Substitute
Therefore, the decay constant for carbon-14 in inverse seconds is
(d)
The number of initial number of decays in a week immediately after the death of species.
(d)

Answer to Problem 24P
The number of initial number of decays in a week immediately after the death of species is
Explanation of Solution
Write the equation to find the decay rate.
Here,
Write the equation to find
Here,
Rewrite the equation for
To find the
Conclusion:
Substitute
Therefore, the number of initial number of decays in a week immediately after the death of species is
(e)
The new number of decays in a week in the current sample.
(e)

Answer to Problem 24P
The new number of decays in a week in the current sample is
Explanation of Solution
Write the equation to find the new number of decays in a week in the current sample.
Here,
Conclusion:
Substitute
Therefore, the new number of decays in a week in the current sample is
(f)
Lifetime of specimen in years using the results from part (c) and (d).
(f)

Answer to Problem 24P
Lifetime of specimen is
Explanation of Solution
Write the equation to find the fraction of decay.
Apply logarithm on both sides.
Rewrite the above equation in terms of
Conclusion:
Substitute
Therefore, the lifetime of specimen is
Want to see more full solutions like this?
Chapter 30 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
- Consider the circuit shown in the figure. The battery has emf ε = 69 volts and negligible internal resistance. The inductance is L = 0.4 H and the resistances are R 1 = 12 Ω and R 2 = 9.0 Ω. Initially the switch S is open and no currents flow. Then the switch is closed. After leaving the switch closed for a very long time, it is opened again. Just after it is opened, what is the current in R 1?arrow_forwardA capacitor with a capacitance of C = 5.95×10−5 F is charged by connecting it to a 12.5 −V battery. The capacitor is then disconnected from the battery and connected across an inductor with an inductance of L = 1.55 H . At the time 2.35×10−2 s after the connection to the inductor is made, what is the current in the inductor? At that time, how much electrical energy is stored in the inductor?arrow_forwardCan someone help me with this question. Thanks.arrow_forward
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill





