![Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term](https://www.bartleby.com/isbn_cover_images/9781133422013/9781133422013_largeCoverImage.gif)
Concept explainers
(a)
The number of carbon atoms in the given sample.
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 24P
The number of carbon atoms in the given sample is
Explanation of Solution
Write the equation to find the number of carbon atoms.
Here,
Conclusion:
Substitute
Therefore, the number of carbon atoms in the given sample is
(b)
The number of carbon atoms in the given sample.
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 24P
The number of carbon-14 atoms in the given sample is
Explanation of Solution
Write the equation to find the number of carbon-14 atoms.
Here,
Conclusion:
Substitute
Therefore, the number of carbon-14 atoms in the given sample is
(c)
The decay constant for carbon-14 in inverse seconds.
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 24P
The decay constant for carbon-14 in inverse seconds is
Explanation of Solution
Write the equation to find the half-life time of carbon-14.
Here,
Conclusion:
Substitute
Therefore, the decay constant for carbon-14 in inverse seconds is
(d)
The number of initial number of decays in a week immediately after the death of species.
(d)
![Check Mark](/static/check-mark.png)
Answer to Problem 24P
The number of initial number of decays in a week immediately after the death of species is
Explanation of Solution
Write the equation to find the decay rate.
Here,
Write the equation to find
Here,
Rewrite the equation for
To find the
Conclusion:
Substitute
Therefore, the number of initial number of decays in a week immediately after the death of species is
(e)
The new number of decays in a week in the current sample.
(e)
![Check Mark](/static/check-mark.png)
Answer to Problem 24P
The new number of decays in a week in the current sample is
Explanation of Solution
Write the equation to find the new number of decays in a week in the current sample.
Here,
Conclusion:
Substitute
Therefore, the new number of decays in a week in the current sample is
(f)
Lifetime of specimen in years using the results from part (c) and (d).
(f)
![Check Mark](/static/check-mark.png)
Answer to Problem 24P
Lifetime of specimen is
Explanation of Solution
Write the equation to find the fraction of decay.
Apply logarithm on both sides.
Rewrite the above equation in terms of
Conclusion:
Substitute
Therefore, the lifetime of specimen is
Want to see more full solutions like this?
Chapter 30 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
- No chatgpt plsarrow_forward3arrow_forward13. After a gust of wind, an orb weaver spider with a mass of 35 g, hanging on a strand of web of length L = .420 m, undergoes simple harmonic motion (SHO) with an amplitude A and period T. If the spider climbs 12.0 cm up the web without perturbing the oscillation otherwise, what is the period of oscillation, in Hz to three significant figures?arrow_forward
- 15. An object of mass m = 8.10 kg is attached to an ideal spring and allowed to hang in the earth's gravitational field. The spring stretches 23.10 cm before it reaches its equilibrium position. The mass then undergoes simple harmonic motion with an amplitude of 10.5 cm. Calculate the velocity of the mass in m/s at a time t= 1.00s to three significant figures.arrow_forwardplease solve and answer the question correctly. Thank you!!arrow_forward18arrow_forward
- 1. Some 1800 years ago Roman soldiers effectively used slings as deadly weapons. The length of these slings averaged about 81 cm and the lead shot that they used weighed about 30 grams. If in the wind up to a release, the shot rotated around the Roman slinger with a period of .14 seconds. Find the maximum acceleration of the shot before being released in m/s^2 and report it to two significant figures.arrow_forward16arrow_forward11. A small charged plastic ball is vertically above another charged small ball in a frictionless test tube as shown in the figure. The balls are in equilibrium at a distance d= 2.0 cm apart. If the charge on one ball is tripled, find the new equilibrium distance between the balls in cm and report it to the proper number of significant figures.arrow_forward
- 12. The electric field at a point 1.3 cm from a small object points toward the object with a strength of 180,000 N/C. Find the object's charge q, in nC to the proper number of significant figures. k = 1/4πε0 = 8.99 × 10^9 N ∙ m^2/C^2arrow_forward14. When the potential difference between the plates of an ideal air-filled parallel plate capacitor is 35 V, the electric field between the plates has a strength of 670 V/m. If the plate area is 4.0 × 10^-2 m^2, what is the capacitance of this capacitor in pF? (ε0 = 8.85 × 10^-12 C^2/N ∙ m^2)arrow_forward10. A small styrofoam ball of mass 0.500 g is placed in an electric field of 1140 N/C pointing downward. What excess charge must be placed on the ball for it to remain suspended in the field? Report your answer in micro-Coulombs to three significant figures.arrow_forward
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
![Text book image](https://www.bartleby.com/isbn_cover_images/9781111794378/9781111794378_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168000/9781938168000_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553292/9781337553292_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078807213/9780078807213_smallCoverImage.gif)