
Fundamentals of Physics Extended 10e Binder Ready Version + WileyPLUS Registration Card
10th Edition
ISBN: 9781118732090
Author: David Halliday
Publisher: Wiley (WileyPLUS Products)
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 30, Problem 59P
To determine
To find:
a) Current through the inductor.
b) Time at which the current through the resistor is equal to the current through the inductor.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
A block of mass m = 2.50 kg is pushed d = 2.30 m along a frictionless horizontal table by a constant applied force of magnitude F = 10.0 N directed at an angle
25.0° below the horizontal as shown in the figure below.
m
(a) Determine the work done by the applied force.
]
(b) Determine the work done by the normal force exerted by the table.
]
(c) Determine the work done by the force of gravity.
]
(d) Determine the work done by the net force on the block.
]
A man pushing a crate of mass m = 92.0 kg at a speed of v = 0.845 m/s encounters a rough horizontal surface of length = 0.65 m as in the figure below. If the coefficient of kinetic friction between the crate and rough surface is 0.357 and he exerts a constant horizontal force of 294 N on
the crate.
e
(a) Find the magnitude and direction of the net force on the crate while it is on the rough surface.
magnitude
direction
---Select---
N
(b) Find the net work done on the crate while it is on the rough surface.
]
(c) Find the speed of the crate when it reaches the end of the rough surface.
m/s
Two blocks, A and B (with mass 45 kg and 120 kg, respectively), are connected by a string, as shown in the figure below. The pulley is frictionless and of negligible mass. The coefficient of kinetic friction between block A and the incline is μk = 0.26. Determine the change in the kinetic
energy of block A as it moves from to, a distance of 15 m up the incline (and block B drops downward a distance of 15 m) if the system starts from rest.
× J
37°
B
Chapter 30 Solutions
Fundamentals of Physics Extended 10e Binder Ready Version + WileyPLUS Registration Card
Ch. 30 - If the circular conductor in Fig. 30-21 undergoes...Ch. 30 - Prob. 2QCh. 30 - Prob. 3QCh. 30 - Prob. 4QCh. 30 - Prob. 5QCh. 30 - Prob. 6QCh. 30 - Prob. 7QCh. 30 - Prob. 8QCh. 30 - Prob. 9QCh. 30 - Prob. 10Q
Ch. 30 - Figure 30-31 shows three situations in which a...Ch. 30 - Figure 30-32 gives four situations in which we...Ch. 30 - Prob. 1PCh. 30 - A certain elastic conducting material is stretched...Ch. 30 - Prob. 3PCh. 30 - A wire loop of radius 12 cm and resistance 8.5 is...Ch. 30 - Prob. 5PCh. 30 - Figure 30-37a shows a circuit consisting of an...Ch. 30 - In Fig. 30-38, the magnetic flux through the loop...Ch. 30 - Prob. 8PCh. 30 - Prob. 9PCh. 30 - Prob. 10PCh. 30 - A rectangular coil of N turns and of length a and...Ch. 30 - Prob. 12PCh. 30 - Prob. 13PCh. 30 - GO In Fig. 30-42a, a uniform magnetic field B...Ch. 30 - GO A square wire loop with 2.00 m sides is...Ch. 30 - GO Figure 30-44a shows a wire that forms a...Ch. 30 - A small circular loop of area 2.00 cm2 is placed...Ch. 30 - Prob. 18PCh. 30 - ILW An electric generator contains a coil of 100...Ch. 30 - At a certain place, Earths magnetic field has...Ch. 30 - Prob. 21PCh. 30 - A rectangular loop area = 0.15 m2 turns in a...Ch. 30 - SSM Figure 30-47 shows two parallel loops of wire...Ch. 30 - Prob. 24PCh. 30 - GO Two long, parallel copper wires of diameter 2.5...Ch. 30 - GO For the wire arrangement in Fig. 30-49, a =...Ch. 30 - ILW As seen in Fig. 30-50, a square loop of wire...Ch. 30 - Prob. 28PCh. 30 - Prob. 29PCh. 30 - Prob. 30PCh. 30 - Prob. 31PCh. 30 - A loop antenna of area 2.00 cm2 and resistance...Ch. 30 - GO Figure 30-54 shows a rod of length L = 10.0 cm...Ch. 30 - Prob. 34PCh. 30 - Prob. 35PCh. 30 - Prob. 36PCh. 30 - Prob. 37PCh. 30 - Prob. 38PCh. 30 - Prob. 39PCh. 30 - Prob. 40PCh. 30 - A circular coil has a 10.0 cm radius and consists...Ch. 30 - Prob. 42PCh. 30 - Prob. 43PCh. 30 - Prob. 44PCh. 30 - Prob. 45PCh. 30 - Prob. 46PCh. 30 - Inductors in series. Two inductors L1 and L2 are...Ch. 30 - Prob. 48PCh. 30 - Prob. 49PCh. 30 - Prob. 50PCh. 30 - ILW The current in an RL circuit drops from 1.0 A...Ch. 30 - Prob. 52PCh. 30 - Prob. 53PCh. 30 - Prob. 54PCh. 30 - Prob. 55PCh. 30 - Prob. 56PCh. 30 - In Fig. 30-65, R = 15 , L = 5.0 H, the ideal...Ch. 30 - Prob. 58PCh. 30 - Prob. 59PCh. 30 - Prob. 60PCh. 30 - Prob. 61PCh. 30 - A coil with an inductance of 2.0 H and a...Ch. 30 - Prob. 63PCh. 30 - Prob. 64PCh. 30 - Prob. 65PCh. 30 - A circular loop of wire 50 mm in radius carries a...Ch. 30 - Prob. 67PCh. 30 - Prob. 68PCh. 30 - ILW What must be the magnitude of a uniform...Ch. 30 - Prob. 70PCh. 30 - Prob. 71PCh. 30 - Prob. 72PCh. 30 - Prob. 73PCh. 30 - Prob. 74PCh. 30 - Prob. 75PCh. 30 - Prob. 76PCh. 30 - Prob. 77PCh. 30 - Prob. 78PCh. 30 - SSM In Fig. 30-71, the battery is ideal and = 10...Ch. 30 - Prob. 80PCh. 30 - Prob. 81PCh. 30 - A uniform magnetic field B is perpendicular to the...Ch. 30 - Prob. 83PCh. 30 - Prob. 84PCh. 30 - Prob. 85PCh. 30 - Prob. 86PCh. 30 - Prob. 87PCh. 30 - Prob. 88PCh. 30 - A coil with an inductance of 2.0 H and a...Ch. 30 - Prob. 90PCh. 30 - Prob. 91PCh. 30 - Prob. 92PCh. 30 - Prob. 93PCh. 30 - A long cylindrical solenoid with 100 turns/cm has...Ch. 30 - Prob. 95PCh. 30 - A square loop of wire is held in a uniform 0.24 T...Ch. 30 - Prob. 97PCh. 30 - The inductance of a closely wound coil is such...Ch. 30 - The magnetic field in the interstellar space of...Ch. 30 - Prob. 100PCh. 30 - A toroid has a 5.00 cm square cross section, an...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- You are working for the Highway Department. In mountainous regions, highways sometimes include a runaway truck ramp, and you are asked to help with the design of such a ramp. A runaway truck ramp is often a lane of gravel adjacent to a long downhill section of roadway where trucks with failing brakes may need assistance to stop. Working with your supervisor, you develop a worst-case scenario: a truck with a mass of 6.00 × 104 kg enters a runaway truck lane traveling at 34.1 m/s. Assume that the maximum constant value for safe acceleration of the truck is -5.00 m/s². Any higher magnitude of acceleration increases the likelihood that semi-trailer rigs could jackknife. Your supervisor asks you to advise her on the required length (in m) of a runaway truck lane on a flat section of ground next to the roadway. marrow_forwardA large cruise ship of mass 6.20 × 107 kg has a speed of 10.2 m/s at some instant. (a) What is the ship's kinetic energy at this time? ] (b) How much work is required to stop it? (Give the work done on the ship. Include the sign of the value in your answer.) ] (c) What is the magnitude of the constant force required to stop it as it undergoes a displacement of 3.10 km? Narrow_forwardA 7.80 g bullet is initially moving at 660 m/s just before it penetrates a block of wood to a depth of 6.20 cm. (a) What is the magnitude of the average frictional force (in N) that is exerted on the bullet while it is moving through the block of wood? Use work and energy considerations to obtain your answer. N (b) Assuming the frictional force is constant, how much time (in s) elapses between the moment the bullet enters the block of wood and the moment it stops moving? Sarrow_forward
- Please don't use Chatgpt will upvote and give handwritten solutionarrow_forwardTwo blocks, A and B (with mass 45 kg and 120 kg, respectively), are connected by a string, as shown in the figure below. The pulley is frictionless and of negligible mass. The coefficient of kinetic friction between block A and the incline is μk = 0.26. Determine the change in the kinetic energy of block A as it moves from to ①, a distance of 15 m up the incline (and block B drops downward a distance of 15 m) if the system starts from rest. ] 37° A © Barrow_forwardA skateboarder with his board can be modeled as a particle of mass 80.0 kg, located at his center of mass. As shown in the figure below, the skateboarder starts from rest in a crouching position at one lip of a half-pipe (point). On his descent, the skateboarder moves without friction so that his center of mass moves through one quarter of a circle of radius 6.20 m. i (a) Find his speed at the bottom of the half-pipe (point Ⓡ). m/s (b) Immediately after passing point Ⓑ, he stands up and raises his arms, lifting his center of mass and essentially "pumping" energy into the system. Next, the skateboarder glides upward with his center of mass moving in a quarter circle of radius 5.71 m, reaching point D. As he passes through point ①, the speed of the skateboarder is 5.37 m/s. How much chemical potential energy in the body of the skateboarder was converted to mechanical energy when he stood up at point Ⓑ? ] (c) How high above point ① does he rise? marrow_forward
- A 31.0-kg child on a 3.00-m-long swing is released from rest when the ropes of the swing make an angle of 29.0° with the vertical. (a) Neglecting friction, find the child's speed at the lowest position. m/s (b) If the actual speed of the child at the lowest position is 2.40 m/s, what is the mechanical energy lost due to friction? ]arrow_forwardA force acting on a particle moving in the xy plane is given by F = (2yî + x²), where F is in newtons and x and y are in meters. The particle moves from the origin to a final position having coordinates x = 5.60 m and y = 5.60 m, as shown in the figure below. y (m) B (x, y) x (m) (a) Calculate the work done by F on the particle as it moves along the purple path (0 Ⓐ©). ] (b) Calculate the work done by ♬ on the particle as it moves along the red path (0 BC). J (c) Is F conservative or nonconservative? ○ conservative nonconservativearrow_forwardA 3.5-kg block is pushed 2.9 m up a vertical wall with constant speed by a constant force of magnitude F applied at an angle of 0 = 30° with the horizontal, as shown in the figure below. If the coefficient of kinetic friction between block and wall is 0.30, determine the following. (a) the work done by F J (b) the work done by the force of gravity ] (c) the work done by the normal force between block and wall J (d) By how much does the gravitational potential energy increase during the block's motion? ]arrow_forward
- Physics different from a sea breeze from a land breezearrow_forwardFile Preview Design a capacitor for a special purpose. After graduating from medical school you and a friend take a three hour cruise to celebrate and end up stranded on an island. While looking for food, a spider falls on your friend giving them a heart attack. Recalling your physics, you realize you can build a make-shift defibrillator by constructing a capacitor from materials on the boat and charging it using the boat's battery. You know that the capacitor must hold 100 J of energy and be at 1000 V (fortunately this is an electric boat which has batteries that are 1000 V) to work. You decide to construct the capacitor by tightly sandwiching a single layer of Saran wrap between sheets of aluminum foil. You read the Saran wrap box and fortunately they tell you that it has a thickness 0.01 mm and dielectric constant of 2.3. The Saran wrap and foil are 40 cm wide and very long. How long is the final capacitor you build that saves your friend?arrow_forwardHow do I plot the force F in Matlba (of gravity pulling on the masses) versus spring displacement, and fit the data with a linear function to find the value for the spring constant. To get a linear fit, use polynomial order 1. Report the value of 'k' from the fit. What code is used?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning


Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning