Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
9th Edition
ISBN: 9781305372337
Author: Raymond A. Serway | John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 30, Problem 47P
A cube of edge length l = 2.50 cm is positioned as (M shown in Figure P30.47. A uniform magnetic field given by
Figure P30.47
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Figure P30.19
20. Two long, parallel wires carry currents of I₁ 3.00 A
and I₂
= 5.00 A in the directions indicated in Figure
P30.20. (a) Find the magnitude and direction of the
magnetic field at a point midway between the wires.
(b) Find the magnitude and direction of the magnetic
field at point P, located d = 20.0 cm above the wire car-
rying the 5.00-A current.
I₁
d
d
Figure P30.20
12
=
A cube of edge length = 4.60 cm is positioned as shown in the figure below. A uniform magnetic field given by B = (6.5 î+ 4.0 ĵ + 3.0 k) T exists throughout the region.
B
#
i
(a) Calculate the magnetic flux through the shaded face.
mWb
(b) What is the total flux through the six faces?
mWb
The segment of wire in Figure P30.7 carries a current of I = 5.10 A, where the radius of the circular arc is R = 3.40 cm. Determine the magnitude and direction of the magnetic field at the origin.
Chapter 30 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
Ch. 30.1 - Consider the magnetic field due to the current in...Ch. 30.2 - Prob. 30.2QQCh. 30.3 - Prob. 30.3QQCh. 30.3 - Prob. 30.4QQCh. 30.4 - Consider a solenoid that is very long compared...Ch. 30 - Prob. 1OQCh. 30 - Prob. 2OQCh. 30 - Prob. 3OQCh. 30 - Prob. 4OQCh. 30 - Prob. 5OQ
Ch. 30 - A long, vertical, metallic wire carries downward...Ch. 30 - Suppose you are facing a tall makeup mirror on a...Ch. 30 - Prob. 8OQCh. 30 - Prob. 9OQCh. 30 - Consider the two parallel wires carrying currents...Ch. 30 - Prob. 11OQCh. 30 - A long solenoid with closely spaced turns carries...Ch. 30 - Prob. 13OQCh. 30 - Prob. 14OQCh. 30 - Prob. 15OQCh. 30 - Prob. 1CQCh. 30 - Prob. 2CQCh. 30 - Prob. 3CQCh. 30 - A hollow copper tube carries a current along its...Ch. 30 - Prob. 5CQCh. 30 - Prob. 6CQCh. 30 - Prob. 7CQCh. 30 - Prob. 8CQCh. 30 - Prob. 9CQCh. 30 - Prob. 10CQCh. 30 - Prob. 11CQCh. 30 - Prob. 12CQCh. 30 - Prob. 1PCh. 30 - Prob. 2PCh. 30 - Prob. 3PCh. 30 - Calculate the magnitude of the magnetic field at a...Ch. 30 - Prob. 5PCh. 30 - In Niels Bohrs 1913 model of the hydrogen atom, an...Ch. 30 - Prob. 7PCh. 30 - Prob. 8PCh. 30 - Prob. 9PCh. 30 - Prob. 10PCh. 30 - Prob. 11PCh. 30 - Consider a flat, circular current loop of radius R...Ch. 30 - Prob. 13PCh. 30 - One long wire carries current 30.0 A to the left...Ch. 30 - Prob. 15PCh. 30 - Prob. 16PCh. 30 - Prob. 17PCh. 30 - Prob. 18PCh. 30 - Prob. 19PCh. 30 - Prob. 20PCh. 30 - Prob. 21PCh. 30 - Prob. 22PCh. 30 - Prob. 23PCh. 30 - Prob. 24PCh. 30 - Prob. 25PCh. 30 - Prob. 26PCh. 30 - Prob. 27PCh. 30 - Why is the following situation impossible? Two...Ch. 30 - Prob. 29PCh. 30 - Prob. 30PCh. 30 - Prob. 31PCh. 30 - The magnetic coils of a tokamak fusion reactor are...Ch. 30 - Prob. 33PCh. 30 - An infinite sheet of current lying in the yz plane...Ch. 30 - Prob. 35PCh. 30 - A packed bundle of 100 long, straight, insulated...Ch. 30 - Prob. 37PCh. 30 - Prob. 38PCh. 30 - Prob. 39PCh. 30 - Prob. 40PCh. 30 - A long solenoid that has 1 000 turns uniformly...Ch. 30 - Prob. 42PCh. 30 - Prob. 43PCh. 30 - Prob. 44PCh. 30 - Prob. 45PCh. 30 - Prob. 46PCh. 30 - A cube of edge length l = 2.50 cm is positioned as...Ch. 30 - Prob. 48PCh. 30 - Prob. 49PCh. 30 - Prob. 50PCh. 30 - Prob. 51APCh. 30 - Prob. 52APCh. 30 - Prob. 53APCh. 30 - Why is the following situation impossible? The...Ch. 30 - Prob. 55APCh. 30 - Prob. 56APCh. 30 - Prob. 57APCh. 30 - Prob. 58APCh. 30 - A very large parallel-plate capacitor has uniform...Ch. 30 - Prob. 60APCh. 30 - Prob. 61APCh. 30 - Prob. 62APCh. 30 - Prob. 63APCh. 30 - Prob. 64APCh. 30 - Prob. 65APCh. 30 - Prob. 66APCh. 30 - Prob. 67APCh. 30 - Prob. 68APCh. 30 - Prob. 69CPCh. 30 - Prob. 70CPCh. 30 - Prob. 71CPCh. 30 - Prob. 72CPCh. 30 - Prob. 73CPCh. 30 - Prob. 74CPCh. 30 - Prob. 75CPCh. 30 - Prob. 76CPCh. 30 - Prob. 77CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A cube of edge length l=2.50 cm is positioned as shown in Figure P30.47. A uniform magnetic field given by B = (5 i + 4j + 3k) T exists throughout the region. (a) Calculate the magnetic flux through the shaded face. (b) What is the total flux through the six faces?arrow_forwardTwo infinitely long current-carrying wires run parallel in the xy plane and are each a distance d = 11.0 cm from the y axis (Fig. P30.83). The current in both wires is I = 5.00 A in the negative y direction. a. Draw a sketch of the magnetic field pattern in the xz plane due to the two wires. What is the magnitude of the magnetic field due to the two wires b. at the origin and c. as a function of z along the z axis, at x = y = 0? FIGURE P30.83arrow_forwardA circular coil 15.0 cm in radius and composed of 145 tightly wound turns carries a current of 2.50 A in the counterclockwise direction, where the plane of the coil makes an angle of 15.0 with the y axis (Fig. P30.73). The coil is free to rotate about the z axis and is placed in a region with a uniform magnetic field given by B=1.35jT. a. What is the magnitude of the magnetic torque on the coil? b. In what direction will the coil rotate? FIGURE P30.73arrow_forward
- A wire is bent in the form of a square loop with sides of length L (Fig. P30.24). If a steady current I flows in the loop, determine the magnitude of the magnetic field at point P in the center of the square. FIGURE P30.24arrow_forwardA uniform magnetic field B=5.44104iT passes through a closed surface with a slanted top as shown in Figure P31.59. a. Given the dimensions and orientation of the closed surface shown, what is the magnetic flux through the slanted top of the surface? b. What is the net magnetic flux through the entire closed surface?arrow_forwardFigure P30.10 shows a circular current-carrying wire. Using the coordinate system indicated (with the z axis out of the page), state the direction of the magnetic field at points A and B.arrow_forward
- A toroid has a major radius R and a minor radius r and is tightly wound with N turns of wire on a hollow cardboard torus. Figure P31.6 shows half of this toroid, allowing us to see its cross section. If R r, the magnetic field in the region enclosed by the wire is essentially the same as the magnetic field of a solenoid that has been bent into a large circle of radius R. Modeling the field as the uniform field of a long solenoid, show that the inductance of such a toroid is approximately L=120N2r2R Figure P31.6arrow_forwardFor both sketches in Figure P30.56, there is a 3.54-A current, a magnetic field strength B 0.650 T. and the angle is 32.0. Find the magnetic force per unit length (magnitude and direction) exerted on the current-carrying conductor in both cases.arrow_forwardTwo frictionless conducting rails separated by l = 55.0 cm are connected through a 2.00- resistor, and the circuit is completed by a bar that is free to slide on the rails (Fig. P32.71). A uniform magnetic field of 5.00 T directed out of the page permeates the region, a. What is the magnitude of the force Fp that must be applied so that the bar moves with a constant speed of 1.25 m/s to the right? b. What is the rate at which energy is dissipated through the 2.00- resistor in the circuit?arrow_forward
- Figure P32.21 shows a circular conducting loop with a 5.00-cm radius and a total resistance of 1.30 placed within a uniform magnetic field pointing into the page. a. What is the rate at which the magnetic field is changing if a counterclockwise current I = 4.60 102 A is induced in the loop? b. Is the induced current caused by an increase or a decrease in the magnetic field with time?arrow_forwardIn Figure P30.38, the rolling axle, 1.50 m long, is pushed along horizontal rails at a constant speed v = 3.00 m/s. A resistor R = 0.400 is connected to the rails at points a and b, directly opposite each other. The wheels make good electrical contact with the rails, so the axle, rails, and R form a closed-loop circuit. The only significant resistance in the circuit is R. A uniform magnetic field B = 0.080 0 T is vertically downward. (a) Find the induced current I in the resistor. (b) What horizontal force F is required to keep the axle rolling at constant speed? (c) Which end of the resistor, a or b, is at the higher electric potential? (d) What If? After the axle rolls past the resistor, does the current in R reverse direction? Explain your answer. Figure P30.38arrow_forwardThe homopolar generator, also called the Faraday disk, is a low-voltage, high-current electric generator. It consists of a rotating conducting disk with one stationary brush (a sliding electrical contact) at its axle and another at a point on its circumference as shown in Figure P31.33. A uniform magnetic field is applied perpendicular to the plane of the disk. Assume the field is 0.900 T, the angular speed is 3.20 103 rev/min, and the radius of the disk is 0.400 m. Find the emf generated between the brushes. When superconducting coils are used to produce a large magnetic field, a homopolar generator can have a power output of several megawatts. Such a generator is useful, for example, in purifying metals by electrolysis. If a voltage is applied to the output terminals of the generator, it runs in reverse as a homopolar motor capable of providing great torque, useful in ship propulsion.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
What is Electromagnetic Induction? | Faraday's Laws and Lenz Law | iKen | iKen Edu | iKen App; Author: Iken Edu;https://www.youtube.com/watch?v=3HyORmBip-w;License: Standard YouTube License, CC-BY