
Concept explainers
(a)
The expression for the force on the Earth due to the pressure of the
(a)

Answer to Problem 41P
The force on the Earth is
Explanation of Solution
Given:
The intensity
Formula Used:
The expression for force acting on the Earth can be expressed by,
The expression for the pressure on the Earth is given by,
The expression for the gravitational force of the sun on the Sun on the Earth is given by,
The expression for the ratio of the pressure on the Earth to the gravitational force on the Earth by the sun is given by,
Calculation:
The expression to determine the force on the Earth is calculated as,
The force on the Earth is calculated as,
The gravitational force on the Sun is calculated as,
The ratio for the radiation pressure on the earth to the gravitational force on the Earth by the is calculated as,
Conclusion:
Therefore, the force on the Earth is
(b)
The force on the Mars due to the pressure of the radiation by Sun and compare the force of the Sun on the Earth.
(b)

Answer to Problem 41P
The force on the Mars is
Explanation of Solution
Given:
The distance of the Mars from the Sun is
Formula used:
The expression to determine the value of the
The expression for force acting on the Mars can be expressed by,
The expression for the pressure on the Mars is given by,
The expression for the gravitational force of the sun on the Mars is given by,
The expression for the ratio of the pressure on the Mars to the gravitational force on the Mars by the sun is given by,
Calculation:
The value of the
The expression to determine the force on the Mars is calculated as,
The force on the Mars is calculated as,
The gravitational force on the Sun is calculated as,
The ratio for the radiation pressure on the Mars to the gravitational force on the Mars by the is calculated as,
Conclusion:
Therefore, the force on the Mars is
(c)
The planet that has the larger ratio of the radiation pressure to the gravitational attraction.
(c)

Answer to Problem 41P
The planet Mars has the larger ratio of radiation force to the gravitational force as the mass of Mars is smaller than the mass of the Earth.
Explanation of Solution
Calculation:
The ratio for the radiation pressure on the earth to the gravitational force on the Earth is given by,
The ratio for the radiation pressure on the Mars to the gravitational force on the Mars is given by,
The planet Mars has the larger ratio of radiation force to the gravitational force as the mass of Mars is smaller than the mass of the Earth.
Conclusion:
Therefore, the planet Mars has the larger ratio of radiation force to the gravitational force as the mass of Mars is smaller than the mass of the Earth.
Want to see more full solutions like this?
Chapter 30 Solutions
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
- Please help, everytime I try to input the data only one point shows on the graph. Graph of centripetal force, Fc, versus V E2 from Activity 1. Include a line of best fit and record the equation of the line.arrow_forwardBased on your graph, explain how centripetal force is affected when the hanging mass changes. Does your graph verify the relationship in the equation r = x^i + y^j = r cos ωt I + r sin ωt^j?arrow_forwardDid your experiment results in Data Table 3 verify, to within a reasonable experimental error, the condition of equilibrium of Equation 6: Στanti-clockwise = Στclockwise? Support your response with experimental data. My data shows that they are not equal to each other. So what does this mean? Thanks!arrow_forward
- Please help, everytime I try to input the data only one point shows on the graph. Graph of centripetal force, Fc, versus V E2 from Activity 1. Include a line of best fit and record the equation of the line.arrow_forwardExplain how your experiment met the condition for equilibrium in Equation 4: ΣFvertical = ΣFy = 0.arrow_forwardCan i get answer and solution for this question and can you teach me What we use to get the answer.arrow_forward
- Can i get answer and solution and can you teach me how to get it.arrow_forwardConsider a image that is located 30 cm in front of a lens. It forms an upright image 7.5 cm from the lens. Theillumination is so bright that that a faint inverted image, due to reflection off the front of the lens, is observedat 6.0 cm on the incident side of the lens. The lens is then turned around. Then it is observed that the faint,inverted image is now 10 cm on the incident side of the lens.What is the index of refraction of the lens?arrow_forward2. In class, we discussed several different flow scenarios for which we can make enough assumptions to simplify the Navier-Stokes equations enough to solve them and obtain an exact solution. Consulting the cylindrical form of the Navier-Stokes equations copied below, please answer the following questions. др a 1 a + +0x- + +O₂ = Pgr + μl 18²v, 2 ave ²v₁] az2 + at or r de r Əz dr ar Vodvz др [18 + + +Or + +Vz = Pgz +fl at ar r 20 ôz ôz dr ave дов V,Ve ave +Or + + = pge at dr r 80 Əz + az2 a.) In class, we discussed how the Navier-Stokes equations are an embodiment of Newton's 2nd law, F = ma (where bolded terms are vectors). Name the 3 forces that we are considering in our analysis of fluid flow for this class. др a 10 1 ve 2 av 2200] + +μ or 42 30 b.) If we make the assumption that flow is "fully developed" in the z direction, which term(s) would go to zero? Write the term below, describe what the term means in simple language (i.e. do not simply state "it is the derivative of a with…arrow_forward
- 1. Consult the form of the x-direction Navier-Stokes equation below that we discussed in class. (For this problem, only the x direction equation is shown for simplicity). Note that the equation provided is for a Cartesian coordinate system. In the spaces below, indicate which of the following assumptions would allow you to eliminate a term from the equation. If one of the assumptions provided would not allow you to eliminate a particular term, write "none" in the space provided. du ди at ( + + + 매일) du ди = - Pgx dy др dx ²u Fu u + fl + ax2 ay² az2 - дх - Əz 1 2 3 4 5 6 7 8 9 Assumption Flow is in the horizontal direction (e.g. patient lying on hospital bed) Flow is unidirectional in the x-direction Steady flow We consider the flow to be between two flat, infinitely wide plates There is no pressure gradient Flow is axisymmetric Term(s) in equationarrow_forwardDon't use ai to answer I will report you answerarrow_forwardwhy did the expert subtract the force exerted by the hand and the elbow by the force due to the weight of the hand and forearm and force exerted by the tricep. Does the order matter and how do you determine what to put first. Question 4 AP, CHAPTER 13 FROM BASIC BIOMECHANICS 8TH EDITIONarrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning





