Concept explainers
(a)
The distance at which the magnitude of magnetic field is
(a)
Answer to Problem 35P
The distance at which the magnitude of magnetic field is
Explanation of Solution
Given info: The magnitude of magnetic field is
The formula to calculate the magnetic field is,
Here,
Deduce the formula to calculate the distance from equation (1).
Substitute
Thus, the distance at which the magnitude of magnetic field is
Conclusion:
Therefore, the distance at which the magnitude of magnetic field is
(b)
The magnetic field
(b)
Answer to Problem 35P
The magnetic field
Explanation of Solution
Given info: The magnitude of magnetic field is
Thus, the direction of the magnetic force per unit length on a wire located
The formula to calculate the magnetic field is,
Here,
The formula to calculate the net magnetic field is,
The distance is measured from the center. The value of
The value of
Substitute
Thus, the magnetic field
Conclusion:
Therefore, the magnetic field
(c)
The distance at which the magnetic field is one tenth of
(c)
Answer to Problem 35P
The distance at which the magnetic field is one tenth of
Explanation of Solution
Given info: The magnitude of magnetic field is
The formula to calculate the net magnetic field is,
The new value of
Substitute
Consider a distance
The value of
Substitute
Further solve for
Thus, the distance at which the magnetic field is one tenth of
Conclusion:
Therefore, The distance at which the magnetic field is one tenth of
(d)
The magnetic field the cable create at points outside the cable.
(d)
Answer to Problem 35P
The magnetic field that the cable creates at points outside the cable is
Explanation of Solution
The magnitude of magnetic field is
The formula to calculate the net magnetic field is,
The center wire in a coaxial cable carries a current is
Thus, the magnetic field that the cable creates at points outside the cable is
Conclusion:
Therefore the magnetic field that the cable creates at points outside the cable is
Want to see more full solutions like this?
Chapter 30 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
- 7. Are all scientific theories testable in the commonly understood sense? How does this make you feel? How should you proceed as a scientist or engineer with this understanding?arrow_forwardWhat is an an example of a hypothesis that sounds scientific but is notarrow_forwardWhat is an example of a scientific hypothesisarrow_forward
- Multiverse is called a theory. It has been proposed to account for the apparent and uncanny fine tuning of our own universe. The idea of the multiverse is that there are infinite, distinct universes out there - all with distinct laws of nature and natural constants - and we live in just one of them. Using the accepted definition of the universe being all that there is (matter, space and energy), would you say that multiverse is a scientific theory?arrow_forwardHow is a law usually different than a theoryarrow_forwardA 1.50 mLmL syringe has an inner diameter of 5.00 mmmm, a needle inner diameter of 0.270 mmmm, and a plunger pad diameter (where you place your finger) of 1.2 cmcm. A nurse uses the syringe to inject medicine into a patient whose blood pressure is 140/100. Part A What is the minimum force the nurse needs to apply to the syringe? Express your answer with the appropriate units. View Available Hint(s)for Part A Hint 1for Part A. How to approach the question The force the nurse applies to the syringe can be determined from the fluid pressure and the area of the plunger. The minimum force corresponds to the patient's lowest blood pressure. Use the following equality 760mmofHg=1atm=1.013×10^5Pa760mmofHg=1atm=1.013×10^5Pa.arrow_forward
- A 1.50 mLmL syringe has an inner diameter of 5.00 mmmm, a needle inner diameter of 0.270 mmmm, and a plunger pad diameter (where you place your finger) of 1.2 cmcm. A nurse uses the syringe to inject medicine into a patient whose blood pressure is 140/100. Part A What is the minimum force the nurse needs to apply to the syringe? Express your answer with the appropriate units. View Available Hint(s)for Part A Hint 1for Part A. How to approach the question The force the nurse applies to the syringe can be determined from the fluid pressure and the area of the plunger. The minimum force corresponds to the patient's lowest blood pressure. Use the following equality 760mmofHg=1atm=1.013×10^5Pa760mmofHg=1atm=1.013×10^5Pa.arrow_forwardIs a scientific theory supposed to just be someone's idea about somethingarrow_forwardwhat is the agenda of physicsarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning