Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 30, Problem 30.76CP
To determine
To show: The magnetic field at point
Expert Solution & Answer
Trending nowThis is a popular solution!
Chapter 30 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Ch. 30 - Consider the magnetic field due to the current in...Ch. 30 - A loose spiral spring carrying no current is hung...Ch. 30 - Prob. 30.3QQCh. 30 - Prob. 30.4QQCh. 30 - Consider a solenoid that is very long compared...Ch. 30 - Prob. 30.1OQCh. 30 - In Figure 30.7, assume I1 = 2.00 A ami I2 = 6.00...Ch. 30 - Answer each question yes or no. (a) Is it possible...Ch. 30 - Two long, parallel wires each carry the same...Ch. 30 - Two long, straight wires cross each other at a...
Ch. 30 - A long, vertical, metallic wire carries downward...Ch. 30 - Suppose you are facing a tall makeup mirror on a...Ch. 30 - A long, straight wire carries a current I (Fig....Ch. 30 - Prob. 30.9OQCh. 30 - Consider the two parallel wires carrying currents...Ch. 30 - What creates a magnetic Hold? More than one answer...Ch. 30 - A long solenoid with closely spaced turns carries...Ch. 30 - A uniform magnetic field is directed along the x...Ch. 30 - Rank the magnitudes of the following magnetic...Ch. 30 - Solenoid A has length L and N turns, solenoid B...Ch. 30 - Is the magnetic field created by a current loop...Ch. 30 - One pole of a magnet attracts a nail. Will the...Ch. 30 - Prob. 30.3CQCh. 30 - A hollow copper tube carries a current along its...Ch. 30 - Imagine you have a compass whose needle can rotate...Ch. 30 - Prob. 30.6CQCh. 30 - A magnet attracts a piece of iron. The iron can...Ch. 30 - Why does hitting a magnet with a hammer cause the...Ch. 30 - The quantity B ds in Amperes law is called...Ch. 30 - Figure CQ30.10 shows four permanent magnets, each...Ch. 30 - Explain why two parallel wires carrying currents...Ch. 30 - Consider a magnetic field that is uniform in...Ch. 30 - Review. In studies of the possibility of migrating...Ch. 30 - In each of parts (a) through (c) of Figure P30.2....Ch. 30 - Calculate the magnitude of the magnetic field at a...Ch. 30 - Calculate the magnitude of the magnetic field at a...Ch. 30 - Prob. 30.5PCh. 30 - In Niels Bohrs 1913 model of the hydrogen atom, an...Ch. 30 - Prob. 30.7PCh. 30 - A conductor consists of a circular loop of radius...Ch. 30 - Two long, straight, parallel wires carry currents...Ch. 30 - Prob. 30.10PCh. 30 - Prob. 30.11PCh. 30 - Consider a flat, circular current loop of radius R...Ch. 30 - A current path shaped as shown in Figure P30.13...Ch. 30 - One long wire carries current 30.0 A to the left...Ch. 30 - Prob. 30.15PCh. 30 - In a long, .straight, vertical lightning stroke,...Ch. 30 - Determine the magnetic field (in terms of I, a,...Ch. 30 - Prob. 30.18PCh. 30 - Determine the magnetic field (in terms of I, a,...Ch. 30 - Two long, parallel wires carry currents of I1 =...Ch. 30 - Two long, parallel conductors, separated by 10.0...Ch. 30 - Prob. 30.22PCh. 30 - Prob. 30.23PCh. 30 - Prob. 30.24PCh. 30 - Prob. 30.25PCh. 30 - In Figure P30.25, the current in the long,...Ch. 30 - Two long, parallel wires are attracted to each...Ch. 30 - Why is the following situation impossible? Two...Ch. 30 - Prob. 30.29PCh. 30 - Niobium metal becomes a superconductor when cooled...Ch. 30 - Figure P30.31 Is a cross-sectional view of a...Ch. 30 - The magnetic coils of a tokamak fusion reactor are...Ch. 30 - A long, straight wire lies on a horizontal table...Ch. 30 - An infinite sheet of current lying in the yz plane...Ch. 30 - The magnetic field 40.0 cm away from a long,...Ch. 30 - A packed bundle of 100 long, straight, insulated...Ch. 30 - Prob. 30.37PCh. 30 - Prob. 30.38PCh. 30 - Prob. 30.39PCh. 30 - A certain superconducting magnet in the form of a...Ch. 30 - A long solenoid that has 1 000 turns uniformly...Ch. 30 - You are given a certain volume of copper from...Ch. 30 - A single-turn square loop of wire, 2.00 cm on each...Ch. 30 - A solenoid 10.0 cm in diameter and 75.0 cm long is...Ch. 30 - It is desired to construct a solenoid that will...Ch. 30 - Prob. 30.46PCh. 30 - A cube of edge length l=2.50 cm is positioned as...Ch. 30 - A solenoid of radius r = 1.25 cm and length =...Ch. 30 - The magnetic moment of the Earth is approximately...Ch. 30 - At saturation, when nearly all the atoms have...Ch. 30 - A 30.0-turn solenoid of length 6.00 cm produces a...Ch. 30 - Prob. 30.52APCh. 30 - Suppose you install a compass on the center of a...Ch. 30 - Why is the following situation impossible? The...Ch. 30 - A nonconducting ring of radius 10.0 cm is...Ch. 30 - Prob. 30.56APCh. 30 - Prob. 30.57APCh. 30 - A circular coil of five turns and a diameter of...Ch. 30 - A very large parallel-plate capacitor has uniform...Ch. 30 - Two circular coils of radius R, each with N turns,...Ch. 30 - Prob. 30.61APCh. 30 - Two circular loops are parallel, coaxial, and...Ch. 30 - Prob. 30.63APCh. 30 - Prob. 30.64APCh. 30 - As seen in previous chapters, any object with...Ch. 30 - Review. Rail guns have been suggested for...Ch. 30 - Prob. 30.67APCh. 30 - An infinitely long, straight wire carrying a...Ch. 30 - Prob. 30.69CPCh. 30 - We have seen that a long solenoid produces a...Ch. 30 - Prob. 30.71CPCh. 30 - Prob. 30.72CPCh. 30 - A wire carrying a current I is bent into the shape...Ch. 30 - Prob. 30.74CPCh. 30 - Prob. 30.75CPCh. 30 - Prob. 30.76CPCh. 30 - The magnitude of the force on a magnetic dipole ...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A circular coil 15.0 cm in radius and composed of 145 tightly wound turns carries a current of 2.50 A in the counterclockwise direction, where the plane of the coil makes an angle of 15.0 with the y axis (Fig. P30.73). The coil is free to rotate about the z axis and is placed in a region with a uniform magnetic field given by B=1.35jT. a. What is the magnitude of the magnetic torque on the coil? b. In what direction will the coil rotate? FIGURE P30.73arrow_forwardA wire is bent in the form of a square loop with sides of length L (Fig. P30.24). If a steady current I flows in the loop, determine the magnitude of the magnetic field at point P in the center of the square. FIGURE P30.24arrow_forwardA piece of insulated wire is shaped into a figure eight as shown in Figure P23.12. For simplicity, model the two halves of the figure eight as circles. The radius of the upper circle is 5.00 cm and that of the lower circle is 9.00 cm. The wire has a uniform resistance per unit length of 3.00 Ω/m. A uniform magnetic field is applied perpendicular to the plane of the two circles, in the direction shown. The magnetic field is increasing at a constant rate of 2.00 T/s. Find (a) the magnitude and (b) the direction of the induced current in the wire. Figure P23.12arrow_forward
- A wire carrying a current I is bent into the shape of an exponential spiral, r = e, from = 0 to = 2 as suggested in Figure P29.47. To complete a loop, the ends of the spiral are connected by a straight wire along the x axis. (a) The angle between a radial line and its tangent line at any point on a curve r = f() is related to the function by tan=rdr/d Use this fact to show that = /4. (b) Find the magnetic field at the origin. Figure P29.47arrow_forwardA cube of edge length l=2.50 cm is positioned as shown in Figure P30.47. A uniform magnetic field given by B = (5 i + 4j + 3k) T exists throughout the region. (a) Calculate the magnetic flux through the shaded face. (b) What is the total flux through the six faces?arrow_forwardWhy is the following situation impossible? A conducting rectangular loop of mass M = 0.100 kg, resistance R = 1.00 , and dimensions w = 50.0 cm by = 90.0 cm is held with its lower edge just above a region with a uniform magnetic field of magnitude B = 1.00 T as shown in Figure P30.34. The loop is released from rest. Just as the top edge of the loop reaches the region containing the field, the loop moves with a speed 4.00 m/s. Figure P30.34arrow_forward
- In Figure P30.38, the rolling axle, 1.50 m long, is pushed along horizontal rails at a constant speed v = 3.00 m/s. A resistor R = 0.400 is connected to the rails at points a and b, directly opposite each other. The wheels make good electrical contact with the rails, so the axle, rails, and R form a closed-loop circuit. The only significant resistance in the circuit is R. A uniform magnetic field B = 0.080 0 T is vertically downward. (a) Find the induced current I in the resistor. (b) What horizontal force F is required to keep the axle rolling at constant speed? (c) Which end of the resistor, a or b, is at the higher electric potential? (d) What If? After the axle rolls past the resistor, does the current in R reverse direction? Explain your answer. Figure P30.38arrow_forwardTwo infinitely long current-carrying wires run parallel in the xy plane and are each a distance d = 11.0 cm from the y axis (Fig. P30.83). The current in both wires is I = 5.00 A in the negative y direction. a. Draw a sketch of the magnetic field pattern in the xz plane due to the two wires. What is the magnitude of the magnetic field due to the two wires b. at the origin and c. as a function of z along the z axis, at x = y = 0? FIGURE P30.83arrow_forwardA rectangular coil consists of N = 100 closely wrapped turns and has dimensions a = 0.400 m and b = 0.300 m. The coil is hinged along the y axis, and its plane makes an angle = 30.0 with the x axis (Fig. P22.25). (a) What is the magnitude of the torque exerted on the coil by a uniform magnetic field B = 0.800 T directed in the positive x direction when the current is I = 1.20 A in the direction shown? (b) What is the expected direction of rotation of the coil? Figure P22.25arrow_forward
- Review. In studies of the possibility of migrating birds using the Earths magnetic field for navigation, birds have been fitted with coils as caps and collars as shown in Figure P22.39. (a) If the identical coils have radii of 1.20 cm and are 2.20 cm apart, with 50 turns of wire apiece, what current should they both carry to produce a magnetic field of 4.50 105 T halfway between them? (b) If the resistance of each coil is 210 V, what voltage should the battery supplying each coil have? (c) What power is delivered to each coil? Figure P22.39arrow_forwardA constant magnetic field of 0.275 T points through a circular loop of wire with radius 3.50 cm as shown in Figure P32.1. a. What is the magnetic flux through the loop? b. Is a current induced in the loop? Explain. FIGURE P32.1arrow_forwardFigure CQ19.7 shows a coaxial cable carrying current I in its inner conductor and a return current of the same magnitude in the opposite direction in the outer conductor. The magnetic field strength at r = r0 is Find the ratio B/B0, at (a) r = 2r0 and (b) r = 4r0. Figure CQ19.7arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning