
Concept explainers
(a)
To draw: The magnetic field pattern in the
(a)

Answer to Problem 30.72CP
The magnetic field pattern in the
Figure (1)
Explanation of Solution
Given info: The amount of current flow in infinitely long wire is
The magnetic field pattern in the
Figure (1)
From the right hand thumb rule, when the thumb is directed towards the direction of current, the curled fingers show the direction of magnetic field.
(b)
The value of magnetic field at origin.
(b)

Answer to Problem 30.72CP
The value of magnetic field at origin is
Explanation of Solution
Given info: The amount of current flow in infinitely long wire is
The direction of magnetic field due to current carry wire is shown below.
Figure (2)
Write the expression for the magnetic field due to current carrying wire.
Here,
From the given figure,
Substitute
The magnetic field component
The resultant magnetic field along
Substitute
From the figure (2),
Substitute
Conclusion:
Therefore, the value of magnetic field at origin is
(c)
The value of magnetic field at
(c)

Answer to Problem 30.72CP
The value of magnetic field at
Explanation of Solution
Given info: The amount of current flow in infinitely long wire is
From the equation (3), the expression for magnetic field is,
The value of magnetic field at
Conclusion:
Therefore, the value of magnetic field at
(d)
The magnetic field at points along the
(d)

Answer to Problem 30.72CP
The magnetic field at points along the
Explanation of Solution
Given info: The amount of current flow in infinitely long wire is
From the calculated value in part (b), the magnetic field at points along the
Conclusion:
Therefore, the magnetic field at points along the
(e)
The distance along the positive
(e)

Answer to Problem 30.72CP
The magnetic field is maximum at
Explanation of Solution
Given info: The amount of current flow in infinitely long wire is
From the calculated value in part (b), the magnetic field at points along the
For maximum value of
Substitute
Substitute
Conclusion:
Therefore, the magnetic field is maximum at
(f)
The maximum value of magnetic field.
(f)

Explanation of Solution
Given info: The amount of current flow in infinitely long wire is
From the calculated value in part (b), the magnetic field at points along the
Substitute
Substitute
Simplify further,
Conclusion:
Therefore, the maximum value of magnetic field is
Want to see more full solutions like this?
Chapter 30 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- A circular coil with 100 turns and a radius of 0.05 m is placed in a magnetic field that changes at auniform rate from 0.2 T to 0.8 T in 0.1 seconds. The plane of the coil is perpendicular to the field.• Calculate the induced electric field in the coil.• Calculate the current density in the coil given its conductivity σ.arrow_forwardAn L-C circuit has an inductance of 0.410 H and a capacitance of 0.250 nF . During the current oscillations, the maximum current in the inductor is 1.80 A . What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? How many times per second does the capacitor contain the amount of energy found in part A? Please show all steps.arrow_forwardA long, straight wire carries a current of 10 A along what we’ll define to the be x-axis. A square loopin the x-y plane with side length 0.1 m is placed near the wire such that its closest side is parallel tothe wire and 0.05 m away.• Calculate the magnetic flux through the loop using Ampere’s law.arrow_forward
- Describe the motion of a charged particle entering a uniform magnetic field at an angle to the fieldlines. Include a diagram showing the velocity vector, magnetic field lines, and the path of the particle.arrow_forwardDiscuss the differences between the Biot-Savart law and Coulomb’s law in terms of their applicationsand the physical quantities they describe.arrow_forwardExplain why Ampere’s law can be used to find the magnetic field inside a solenoid but not outside.arrow_forward
- 3. An Atwood machine consists of two masses, mA and m B, which are connected by an inelastic cord of negligible mass that passes over a pulley. If the pulley has radius RO and moment of inertia I about its axle, determine the acceleration of the masses mA and m B, and compare to the situation where the moment of inertia of the pulley is ignored. Ignore friction at the axle O. Use angular momentum and torque in this solutionarrow_forwardA 0.850-m-long metal bar is pulled to the right at a steady 5.0 m/s perpendicular to a uniform, 0.650-T magnetic field. The bar rides on parallel metal rails connected through a 25-Ω, resistor (Figure 1), so the apparatus makes a complete circuit. Ignore the resistance of the bar and the rails. Please explain how to find the direction of the induced current.arrow_forwardFor each of the actions depicted, determine the direction (right, left, or zero) of the current induced to flow through the resistor in the circuit containing the secondary coil. The coils are wrapped around a plastic core. Immediately after the switch is closed, as shown in the figure, (Figure 1) in which direction does the current flow through the resistor? If the switch is then opened, as shown in the figure, in which direction does the current flow through the resistor? I have the answers to the question, but would like to understand the logic behind the answers. Please show steps.arrow_forward
- When violet light of wavelength 415 nm falls on a single slit, it creates a central diffraction peak that is 8.60 cm wide on a screen that is 2.80 m away. Part A How wide is the slit? ΟΙ ΑΣΦ ? D= 2.7.10-8 Submit Previous Answers Request Answer × Incorrect; Try Again; 8 attempts remaining marrow_forwardTwo complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values. Any complex value can be expessed in the form of a+bi=reiθ. Find θ for (z1-z∗2)/z1+z2∗. Find r and θ for (z1−z2∗)z1z2∗ Please show all stepsarrow_forwardCalculate the center of mass of the hollow cone shown below. Clearly specify the origin and the coordinate system you are using. Z r Y h Xarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





