EBK PHYSICS FOR SCIENTISTS AND ENGINEER
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
9th Edition
ISBN: 9780100461260
Author: SERWAY
Publisher: YUZU
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 30, Problem 30.66AP

Review. Rail guns have been suggested for launching projectiles into space without chemical rockets. A tabletop model rail gun (Fig. P29.42) consists of two long, parallel, horizontal rails = 3.50 cm apart, bridged by a bar of mass m = 3.00 g that is free to slide without friction. The rails and bar have low electric resistance, and the current is limited to a constant I = 24.0 A by a power supply that is far to the left of the figure, so it has no magnetic effect on the bar. Figure P29.42 shows the bar at rest at the midpoint of the rails at the moment the current is established. We wish to find the speed with which the bar leaves the rails after being released from the midpoint of the rails. (a) Find the magnitude of the magnetic field at a distance of 1.75 cm from a single long wire carrying a current of 2.40 A. (b) For purposes of evaluating the magnetic field, model the rails as infinitely long. Using the result of part (a), find the magnitude and direction of the magnetic field at the midpoint of the bar. (c) Argue that this value of the field will be the same at all positions of the bar to the right of the midpoint of the rails. At other points along the bar, the field is in the same direction as at the midpoint, but is larger in magnitude. Assume the average effective magnetic field along the bar is five times larger than the field at the midpoint. With this assumption, find (d) the magnitude and (e) the direction of the force on the bar. (f) Is the bar properly modeled as a particle under constant acceleration? (g) Find the velocity of the bar after it has traveled a distance d = 130 cm to the end of the rails.

Figure P29.42

Chapter 30, Problem 30.66AP, Review. Rail guns have been suggested for launching projectiles into space without chemical rockets.

(a)

Expert Solution
Check Mark
To determine
The magnitude of the magnetic field at a distance of 1.75cm from a single long wire.

Answer to Problem 30.66AP

The magnitude of the magnetic field at a distance of 1.75cm from a single long wire is 2.74×104T .

Explanation of Solution

Given info: The length of the rails is 3.50cm , the mass of bar is 3.00g , value of current is 24.0A .

Formula to calculate the magnetic field is

B=μ0I2πr (1)

Here,

B is the magnetic field.

μ0 is the absolute permeability.

I is the current flow in the wire.

r is the distance of the point.

Substitute 4π×107Tm/A for μ0 , 24.0A for I , and 1.75cm for r to find B .

B=(4π×107Tm/A)×24.0A2π×1.75cm×102m1cm=2.74×104T

Conclusion:

Therefore, the magnitude of the magnetic field at a distance of 1.75cm from a single long wire is 2.74×104T .

(b)

Expert Solution
Check Mark
To determine
The magnitude and direction of the magnetic field at the mid-point of the bar.

Answer to Problem 30.66AP

The magnitude of the magnetic field at the mid-point of the bar is 2.74×104T into the page.

Explanation of Solution

Given info: The length of the rails is 3.50cm , the mass of bar is 3.00g , value of current is 24.0A .

The diagram that represents the given situation is shown below.

EBK PHYSICS FOR SCIENTISTS AND ENGINEER, Chapter 30, Problem 30.66AP

Figure (I)

Since the current is diverted through the bar, only half of each rails carries currents, so the field produce by each rail is half of the infinitely long wire produces.

Write the expression for the magnetic field produce by conductor AB at point C is,

BAB=12B

Substitute 2.74×104T for B in above equation.

BAB=12×2.74×104T=1.37104T

Write the expression for the magnetic field produce by conductor DE at point C is,

BDE=12B

Substitute 2.74×104T for B in above equation.

BDE=12×2.74×104T=1.37104T

Formula to calculate the total magnetic field at point C is,

BC=BAB+BDE

Substitute 1.37104T for BAB and BDE in above equation.

BC=1.37104T+1.37104T=2.74×104T

Conclusion:

Therefore, the magnitude of the magnetic field at the mid-point of the bar is 2.74×104T into the page.

(c)

Expert Solution
Check Mark
To determine
The reason that the value of magnetic field will be same at all position of the bar to the right of the midpoint of the rails.

Answer to Problem 30.66AP

The rails are very long so the location of the bar does not depend upon the length of the rail to the right side.

Explanation of Solution

Given info: The length of the rails is 3.50cm , the mass of bar is 3.00g , value of current is 24.0A .

The assumption makes that the rails are infinitely long so, the length of the rail to the right of the bar does not depend upon the location of the bar. Hence the magnetic field will be same at all position of the bar to the right of the midpoint of the rails.

Conclusion:

Therefore, due to infinite length of the rails makes the field same at all position of the midpoint of the bar.

(d)

Expert Solution
Check Mark
To determine
The magnitude of the force on the bar.

Answer to Problem 30.66AP

The magnitude of the force on the bar is 1.15×103N .

Explanation of Solution

Given info: The length of the rails is 3.50cm , the mass of bar is 3.00g , value of current is 24.0A .

Formula to calculate the force on the bar is,

F=I(l×B)

Here,

I is the value of current.

l is the length vector.

B is the field vector.

Substitute 24.0A for I , 3.50cmk^ for l and (5×2.74×104T) for B to find F

F=(24.0A)(3.50cm×102m1cmk^)(5×2.74×104T)=1.15×103Ni^

Conclusion:

Therefore, the magnitude of the force on the bar is 1.15×103N .

(e)

Expert Solution
Check Mark
To determine
The direction of the force on the bar.

Answer to Problem 30.66AP

The direction of the force on the bar is in positive x-direction.

Explanation of Solution

Given info: The length of the rails is 3.50cm , the mass of bar is 3.00g , value of current is 24.0A .

The force vector on the bar is 1.15×103Ni^ . So, the direction of the force on the bar is in the positive x-direction.

Conclusion:

Therefore, the direction of the force on the bar is in positive x-direction.

(f)

Expert Solution
Check Mark
To determine
Whether the bar is properly modeled as a particle under constant acceleration.

Answer to Problem 30.66AP

Yes, the bar will move with constant acceleration of magnitude 0.384m/s2 .

Explanation of Solution

Given info: The length of the rails is 3.50cm , the mass of bar is 3.00g , value of current is 24.0A .

The length of the bar, value of current and field producer is constant so, the force exerted on the bar is constant that gives uniform acceleration of the bar.

Formula to calculate the acceleration of the bar is,

a=Fm

Substitute 1.15×103N for F and 3.00g for m to find a .

a=1.15×103N3.00g×103kg1g=0.384m/s2

Conclusion:

Therefore, the bar will move with constant acceleration of magnitude 0.384m/s2 .

(g)

Expert Solution
Check Mark
To determine
The velocity of the bar.

Answer to Problem 30.66AP

The velocity of the bar is 0.998m/s .

Explanation of Solution

Given info: The length of the rails is 3.50cm , the mass of bar is 3.00g , value of current is 24.0A .

Formula to calculate the velocity of the bar is,

vf2=vi2+2ad

Here,

vf is the final velocity of the bar.

vi is the initial velocity of the bar.

d is the distance travelled by the bar.

Substitute 0 for vi , 0.384m/s2 for a and 130cm for d to find vf .

vf=0+2(0.384m/s2)(130cm×102m1cm)=0.998m/s

Conclusion:

Therefore, the velocity of the bar is 0.998m/s .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A beam of alpha-particles of energy 7.3MeV is used.The protons emitted at an angle of zero degree are found to have energy of 9.34MeV.Find the Q-value of this reaction .
An aluminum rod and a copper rod have the same length of 100cm at 5C. At what temperatures would one of the rods be 0.5 mm longer than the other? Which rod is longer at such temperature?
ROTATIONAL DYNAMICS Question 01 A solid circular cylinder and a solid spherical ball of the same mass and radius are rolling together down the same inclined. Calculate the ratio of their kinetic energy. Assume pure rolling motion Question 02 A sphere and cylinder of the same mass and radius start from ret at the same point and more down the same plane inclined at 30° to the horizontal Which body gets the bottom first and what is its acceleration b) What angle of inclination of the plane is needed to give the slower body the same acceleration Question 03 i) Define the angular velocity of a rotating body and give its SI unit A car wheel has its angular velocity changing from 2rads to 30 rads seconds. If the radius of the wheel is 400mm. calculate ii) The angular acceleration iii) The tangential linear acceleration of a point on the rim of the wheel Question 04 in 20

Chapter 30 Solutions

EBK PHYSICS FOR SCIENTISTS AND ENGINEER

Ch. 30 - A long, vertical, metallic wire carries downward...Ch. 30 - Suppose you are facing a tall makeup mirror on a...Ch. 30 - A long, straight wire carries a current I (Fig....Ch. 30 - Prob. 30.9OQCh. 30 - Consider the two parallel wires carrying currents...Ch. 30 - What creates a magnetic Hold? More than one answer...Ch. 30 - A long solenoid with closely spaced turns carries...Ch. 30 - A uniform magnetic field is directed along the x...Ch. 30 - Rank the magnitudes of the following magnetic...Ch. 30 - Solenoid A has length L and N turns, solenoid B...Ch. 30 - Is the magnetic field created by a current loop...Ch. 30 - One pole of a magnet attracts a nail. Will the...Ch. 30 - Prob. 30.3CQCh. 30 - A hollow copper tube carries a current along its...Ch. 30 - Imagine you have a compass whose needle can rotate...Ch. 30 - Prob. 30.6CQCh. 30 - A magnet attracts a piece of iron. The iron can...Ch. 30 - Why does hitting a magnet with a hammer cause the...Ch. 30 - The quantity B ds in Amperes law is called...Ch. 30 - Figure CQ30.10 shows four permanent magnets, each...Ch. 30 - Explain why two parallel wires carrying currents...Ch. 30 - Consider a magnetic field that is uniform in...Ch. 30 - Review. In studies of the possibility of migrating...Ch. 30 - In each of parts (a) through (c) of Figure P30.2....Ch. 30 - Calculate the magnitude of the magnetic field at a...Ch. 30 - Calculate the magnitude of the magnetic field at a...Ch. 30 - Prob. 30.5PCh. 30 - In Niels Bohrs 1913 model of the hydrogen atom, an...Ch. 30 - Prob. 30.7PCh. 30 - A conductor consists of a circular loop of radius...Ch. 30 - Two long, straight, parallel wires carry currents...Ch. 30 - Prob. 30.10PCh. 30 - Prob. 30.11PCh. 30 - Consider a flat, circular current loop of radius R...Ch. 30 - A current path shaped as shown in Figure P30.13...Ch. 30 - One long wire carries current 30.0 A to the left...Ch. 30 - Prob. 30.15PCh. 30 - In a long, .straight, vertical lightning stroke,...Ch. 30 - Determine the magnetic field (in terms of I, a,...Ch. 30 - Prob. 30.18PCh. 30 - Determine the magnetic field (in terms of I, a,...Ch. 30 - Two long, parallel wires carry currents of I1 =...Ch. 30 - Two long, parallel conductors, separated by 10.0...Ch. 30 - Prob. 30.22PCh. 30 - Prob. 30.23PCh. 30 - Prob. 30.24PCh. 30 - Prob. 30.25PCh. 30 - In Figure P30.25, the current in the long,...Ch. 30 - Two long, parallel wires are attracted to each...Ch. 30 - Why is the following situation impossible? Two...Ch. 30 - Prob. 30.29PCh. 30 - Niobium metal becomes a superconductor when cooled...Ch. 30 - Figure P30.31 Is a cross-sectional view of a...Ch. 30 - The magnetic coils of a tokamak fusion reactor are...Ch. 30 - A long, straight wire lies on a horizontal table...Ch. 30 - An infinite sheet of current lying in the yz plane...Ch. 30 - The magnetic field 40.0 cm away from a long,...Ch. 30 - A packed bundle of 100 long, straight, insulated...Ch. 30 - Prob. 30.37PCh. 30 - Prob. 30.38PCh. 30 - Prob. 30.39PCh. 30 - A certain superconducting magnet in the form of a...Ch. 30 - A long solenoid that has 1 000 turns uniformly...Ch. 30 - You are given a certain volume of copper from...Ch. 30 - A single-turn square loop of wire, 2.00 cm on each...Ch. 30 - A solenoid 10.0 cm in diameter and 75.0 cm long is...Ch. 30 - It is desired to construct a solenoid that will...Ch. 30 - Prob. 30.46PCh. 30 - A cube of edge length l=2.50 cm is positioned as...Ch. 30 - A solenoid of radius r = 1.25 cm and length =...Ch. 30 - The magnetic moment of the Earth is approximately...Ch. 30 - At saturation, when nearly all the atoms have...Ch. 30 - A 30.0-turn solenoid of length 6.00 cm produces a...Ch. 30 - Prob. 30.52APCh. 30 - Suppose you install a compass on the center of a...Ch. 30 - Why is the following situation impossible? The...Ch. 30 - A nonconducting ring of radius 10.0 cm is...Ch. 30 - Prob. 30.56APCh. 30 - Prob. 30.57APCh. 30 - A circular coil of five turns and a diameter of...Ch. 30 - A very large parallel-plate capacitor has uniform...Ch. 30 - Two circular coils of radius R, each with N turns,...Ch. 30 - Prob. 30.61APCh. 30 - Two circular loops are parallel, coaxial, and...Ch. 30 - Prob. 30.63APCh. 30 - Prob. 30.64APCh. 30 - As seen in previous chapters, any object with...Ch. 30 - Review. Rail guns have been suggested for...Ch. 30 - Prob. 30.67APCh. 30 - An infinitely long, straight wire carrying a...Ch. 30 - Prob. 30.69CPCh. 30 - We have seen that a long solenoid produces a...Ch. 30 - Prob. 30.71CPCh. 30 - Prob. 30.72CPCh. 30 - A wire carrying a current I is bent into the shape...Ch. 30 - Prob. 30.74CPCh. 30 - Prob. 30.75CPCh. 30 - Prob. 30.76CPCh. 30 - The magnitude of the force on a magnetic dipole ...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY