COLLEGE PHYSICS,V.2
11th Edition
ISBN: 9781305965522
Author: SERWAY
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 30, Problem 22P
To determine
The kinetic energy of anti-proton.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The very high speeds of alpha particles make them suitable for experiments that probe the nature of matter. A nucleus ejects an alpha particle with a kinetic energy of 8.3 MeV, a typical energy. How fast is the alpha particle moving?
An proton-antiproton pair is produced by a 2.00×1032.00×103 MeV photon. What is the kinetic energy of the antiproton if the kinetic energy of the proton is 92.85 MeV?Use the following Joules-to-electron-Volts conversion 1eV = 1.602 × 10-19 J. The rest mass of a proton is 1.67×10−271.67×10−27 kg.
A proton‑antiproton annihilation takes place, leaving two photons with a combined energy of 3.50 GeV.
Find the kinetic energy Kp of the proton if the proton had the same kinetic energy as the antiproton.
Kp = ? eV
Find the kinetic energy K'p of the proton if the proton had 3.25 times as much kinetic energy as the antiproton.
K'p = ? eV
Chapter 30 Solutions
COLLEGE PHYSICS,V.2
Ch. 30.6 - Prob. 30.1QQCh. 30.6 - Prob. 30.2QQCh. 30 - Prob. 1CQCh. 30 - Prob. 2CQCh. 30 - Prob. 3CQCh. 30 - Prob. 4CQCh. 30 - Prob. 5CQCh. 30 - Prob. 6CQCh. 30 - Prob. 7CQCh. 30 - Prob. 8CQ
Ch. 30 - Prob. 9CQCh. 30 - Prob. 10CQCh. 30 - Prob. 11CQCh. 30 - Prob. 12CQCh. 30 - Prob. 1PCh. 30 - Prob. 2PCh. 30 - Prob. 3PCh. 30 - Prob. 4PCh. 30 - Prob. 5PCh. 30 - Prob. 6PCh. 30 - Prob. 7PCh. 30 - Prob. 8PCh. 30 - Prob. 9PCh. 30 - Prob. 10PCh. 30 - Prob. 11PCh. 30 - Prob. 12PCh. 30 - Prob. 13PCh. 30 - Prob. 14PCh. 30 - Prob. 15PCh. 30 - Find the energy released in the fusion reaction...Ch. 30 - Find the energy released in the fusion reaction...Ch. 30 - Prob. 18PCh. 30 - Prob. 19PCh. 30 - Prob. 20PCh. 30 - Prob. 21PCh. 30 - Prob. 22PCh. 30 - Prob. 23PCh. 30 - Prob. 24PCh. 30 - Prob. 25PCh. 30 - Prob. 26PCh. 30 - Prob. 27PCh. 30 - Prob. 28PCh. 30 - Prob. 29PCh. 30 - Prob. 30PCh. 30 - Prob. 31PCh. 30 - Prob. 32PCh. 30 - Prob. 33PCh. 30 - Prob. 34PCh. 30 - Prob. 35PCh. 30 - Prob. 36PCh. 30 - Prob. 37APCh. 30 - Prob. 38APCh. 30 - Prob. 39APCh. 30 - Prob. 40APCh. 30 - Prob. 41APCh. 30 - Prob. 42APCh. 30 - Prob. 43APCh. 30 - Prob. 44APCh. 30 - Prob. 45APCh. 30 - Prob. 46APCh. 30 - Prob. 47APCh. 30 - Prob. 48APCh. 30 - Prob. 49APCh. 30 - Prob. 50AP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An unstable particle, initially at rest, decays into a proton (rest energy 938.3 MeV) and a negative pion (rest energy 139.5 MeV). A uniform magnetic field of 0.250 T exists perpendicular to the velocities of the created particles. The radius of curvature of each track is found to be 1.33 m. What is the rest mass of the original unstable particle?arrow_forward(a) What is the kinetic energy in MeV of a ray that is traveling at 0.998c? This gives some idea of how energetic a ray must be to travel at nearly the same speed as a ray. (b) What is the velocity of the ray relative to the ray?arrow_forwardA pion at rest (m = 273me) decays to a muon (m = 207me) and an antineutrino (mp 0). The reaction is written + v. Find (a) the kinetic energy of the muon and (b) the energy of the antineutrino in electron volts.arrow_forward
- A chain of nuclear reactions in the Suns core converts four protons into a helium nucleus. (a) What is the mass difference between four protons and a helium nucleus? (b) How much energy in MeV is released during the conversion of four protons into a helium nucleus?arrow_forwardA -meson is a particle that decays into a muon and a massless particle. The -meson has a rest mass energy of 139.6 MeV, and the muon has a rest mass energy of 105.7 MeV. Suppose the -meson is at rest and all of the missing mass goes into the muon's kinetic energy. How fast will the muon move?arrow_forwardSuppose you are designing a proton decay experiment and you can detect 50 percent of the proton decays in a tank of water. (a) How many kilograms of water would you need to see one decay per month, assuming a lifetime of 1031 y? (b) How many cubic meters of water is this? (c) If the actual lifetime is 1033 y, how long would you have to wait on an average to see a single proton decay?arrow_forward
- A neutral pion 770 (rest energy = 135.0 MeV) produced in a high-energy particle experiment moves at a speed of 0.851c. After a very short time, it decays into two y-ray photons. One of the y-ray photons has an energy of 126 MeV. What is the energy (in MeV) of the second y-ray photon? Take relativistic effects into account. Number i Before decay Units E mm After decay E₂ muarrow_forwardA cyclotron used to accelerate protons has a maximum radius of 0.4 m and the magnetic induction used is one tesla. Find the frequency of oscillator connected to the dees and the maximum velocity of emerging protons. Through what P.D. must the protons be accelerated from rest to achieve this speed? If deuterons are used instead of protons, what would be their final energy? Mp= 1.67 x 10-27 kg.arrow_forwardProvide the answers in 90 minutes, and count as 2 questions if needed.arrow_forward
- Consider a region where the following electric and magnetic fields are present: E = 12.52 ax + 19.68 ay + 18.72 az volts per meter and B = -12.00 ax + 18.86 ay + 18.27 az teslas. If a 1.38-coulomb charge is moving at a speed of 2.73 meters per second in the -y-direction, determine the magnitude of the Lorentz force in newtons.arrow_forwardThese values may be useful for the following question(s). speed of light = 3.00 ´ 108 m/s 1 J = 1 kg·m2/s2 1 cal = 4.18 J What is the binding energy of an atom having a mass deficiency of 0.4721 amu per atom? Express your answer in kJ/mol of atoms.arrow_forwardAn alpha particle with kinetic energy 7.70 MeV collides with an 14N nucleus at rest, and the two transform into an 17O nucleus and a proton. The proton is emitted at 90° to the direction of the incident alpha particle and has a kinetic energy of 4.44 MeV.The masses of the various particles are alpha particle, 4.00260 u; 14N, 14.00307 u; proton, 1.007825 u; and 17O, 16.99914 u. In MeV, what are (a) the kinetic energy of the oxygen nucleus and (b) the Q of the reaction? (Hint:The speeds of the particles are much less than c.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College