EBK 3I-EBK: WELDING PRINCIPLES & APPLIC
EBK 3I-EBK: WELDING PRINCIPLES & APPLIC
8th Edition
ISBN: 9780176919764
Author: Jeffus
Publisher: VST
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 30, Problem 1R

What protects the molten SAW pool from the atmosphere?

Expert Solution & Answer
Check Mark
To determine

The methodused for protecting molten SAW pool from the atmosphere.

Explanation of Solution

SAW stands for Submerged Arc Welding. It is a type of welding process which is used for thejoining of similar as well as dissimilar metals.In SAW, the arc is produced between the electrode and workpiece to be joined. The heat produced from this arc is used for the fusion of these metals.The fusion forms a molten pool. This molten pool is protected from the atmosphere by using a thick layer of flux or slag. The molten flux or slag is formed by the granular fluxing.

This slag covers the spark, radiation of arc and fumes which are produced duringthe welding process. It also prevents the molten metal to react with the contaminants of air, and hence gives a good quality of weld. Submerged Arc

Welding is used in horizontal welding position. It has a high penetrating power. This high power reduces the amount of filler metal used in the welding process. It has high amount of deposition rate. It possesses a better quality of weld.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
4. Find the equivalent spring constant and equivalent viscous-friction coefficient for the systems shown below. @ B₁ B₂ H B3 (b)
5. The cart shown below is inclined 30 degrees with respect to the horizontal. At t=0s, the cart is released from rest (i.e. with no initial velocity). If the air resistance is proportional to the velocity squared. Analytically determine the initial acceleration and final or steady-state velocity of the cart. Take M= 900 kg and b 44.145 Ns²/m². Mg -bx 2 от
9₁ A Insulated boundary Insulated boundary dx Let's begin with the strong form for a steady-state one-dimensional heat conduction problem, without convection. d dT + Q = dx dx According to Fourier's law of heat conduction, the heat flux q(x), is dT q(x)=-k dx. x Q is the internal heat source, which heat is generated per unit time per unit volume. q(x) and q(x + dx) are the heat flux conducted into the control volume at x and x + dx, respectively. k is thermal conductivity along the x direction, A is the cross-section area perpendicular to heat flux q(x). T is the temperature, and is the temperature gradient. dT dx 1. Derive the weak form using w(x) as the weight function. 2. Consider the following scenario: a 1D block is 3 m long (L = 3 m), with constant cross-section area A = 1 m². The left free surface of the block (x = 0) is maintained at a constant temperature of 200 °C, and the right surface (x = L = 3m) is insulated. Recall that Neumann boundary conditions are naturally satisfied…

Chapter 30 Solutions

EBK 3I-EBK: WELDING PRINCIPLES & APPLIC

Ch. 30 - What must be done with SA fluxes to prevent...Ch. 30 - Prob. 12RCh. 30 - What happens to the unfused SA welding flux?Ch. 30 - Why is some form of mechanical guidance required...Ch. 30 - List the common methods used to start the SA arc.Ch. 30 - Prob. 16RCh. 30 - Prob. 17RCh. 30 - Prob. 18RCh. 30 - How is an ES weld started?Ch. 30 - Prob. 20RCh. 30 - Prob. 21RCh. 30 - What is the major difference between ESW and EGW?Ch. 30 - Prob. 23RCh. 30 - What can be used to produce the force needed to...Ch. 30 - Prob. 25RCh. 30 - What steps can be included in RSW?Ch. 30 - Prob. 27RCh. 30 - Prob. 28RCh. 30 - Prob. 29RCh. 30 - What is the most common joint for seam welds?Ch. 30 - Prob. 31RCh. 30 - Prob. 32RCh. 30 - Why is FW not usually cost-effective for short...Ch. 30 - Prob. 34RCh. 30 - Prob. 35RCh. 30 - Prob. 36RCh. 30 - Prob. 37RCh. 30 - Prob. 38RCh. 30 - How can a misaligned seam be tracked automatically...Ch. 30 - Prob. 40RCh. 30 - Prob. 41RCh. 30 - Prob. 42RCh. 30 - List the steps of the inertia welding process.Ch. 30 - Prob. 44RCh. 30 - Prob. 45RCh. 30 - Prob. 46RCh. 30 - Prob. 47RCh. 30 - Why is THSP known as a cold buildup process?Ch. 30 - Which thermal spray process can be used to apply...Ch. 30 - Why should thermal spray coats be applied as thin...Ch. 30 - What is the advantage of using an inert gas for...Ch. 30 - Prob. 52RCh. 30 - Prob. 53RCh. 30 - Prob. 54RCh. 30 - Prob. 55RCh. 30 - Prob. 56RCh. 30 - Prob. 57RCh. 30 - Prob. 58RCh. 30 - Prob. 59RCh. 30 - How can wear provide a self-sharpening effect on...Ch. 30 - Prob. 61R
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning
Materials Science Mechanical Engineering - Part 3 Corrosion Explained; Author: Mega Mechatronics;https://www.youtube.com/watch?v=Il-abRhrzFY;License: Standard Youtube License