Physics for Scientists and Engineers With Modern Physics
Physics for Scientists and Engineers With Modern Physics
9th Edition
ISBN: 9781133953982
Author: SERWAY, Raymond A./
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 30, Problem 1OQ

(i)

To determine

The magnitude of the magnetic field inside a long solenoid, if the current is doubled.

(i)

Expert Solution
Check Mark

Answer to Problem 1OQ

Option (b) It becomes twice as large; is correct.

Explanation of Solution

Write the expression for magnetic field inside a solenoid.

    B=μ0nI                                                                                                                  (I)

Here, μ0 is the permeability of free space, n is the turn density, I is the current and B is the magnitude of the magnetic field.

Substitute 2I for I in equation (I).

    B=μ0n(2I)=2μ0nI

If the current inside a long solenoid is doubled, the magnitude of the magnetic field becomes twice as large.

Conclusion:

Therefore, option (b) is correct.

(ii)

To determine

The magnitude of the magnetic field inside a long solenoid, if the length of the solenoid is doubled.

(ii)

Expert Solution
Check Mark

Answer to Problem 1OQ

Option (d) It becomes one-half as large; is correct.

Explanation of Solution

Substitute Nl for n in equation (I) to find B.

    B=μ0(Nl)I                                                                    (II)

Here, N is the number of turns and l is the length of the solenoid.

Substitute 2l for l in equation (II) to find B.

    B=μ0(N2l)I=12μ0(Nl)I

If the length of the solenoid is doubled, then the magnitude of the magnetic field becomes one-half as large.

Conclusion:

Therefore, option (d) is correct.

(iii)

To determine

The magnitude of the magnetic field inside a long solenoid, if the number of turns is doubled.

(iii)

Expert Solution
Check Mark

Answer to Problem 1OQ

Option (b) It becomes twice as large; is correct.

Explanation of Solution

Substitute 2N for N in equation (II) to find B.

    B=μ0(2Nl)I=2(μ0NIl)

If the number of turns of the solenoid is doubled, then the magnitude of the magnetic field becomes twice as large.

Conclusion:

Therefore, option (b) is correct.

(iv)

To determine

The magnitude of the magnetic field inside a long solenoid, if the radius doubled.

(iv)

Expert Solution
Check Mark

Answer to Problem 1OQ

Option (c) It is unchanged; is correct.

Explanation of Solution

Equation (I) signifies that the magnitude of the magnetic field depends upon the current, permeability of free space and the turn density. It does not depend upon the radius.

Therefore, the magnitude of the magnetic field remains unchanged if the radius is doubled.

Conclusion:

Therefore, option (c) is correct.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
m C A block of mass m slides down a ramp of height hand collides with an identical block that is initially at rest. The two blocks stick together and travel around a loop of radius R without losing contact with the track. Point A is at the top of the loop, point B is at the end of a horizon- tal diameter, and point C is at the bottom of the loop, as shown in the figure above. Assume that friction between the track and blocks is negligible. (a) The dots below represent the two connected blocks at points A, B, and C. Draw free-body dia- grams showing and labeling the forces (not com ponents) exerted on the blocks at each position. Draw the relative lengths of all vectors to reflect the relative magnitude of the forces. Point A Point B Point C (b) For each of the following, derive an expression in terms of m, h, R, and fundamental constants. i. The speed of moving block at the bottom of the ramp, just before it contacts the stationary block ii. The speed of the two blocks immediately…
The velocity of an elevator is given by the graph shown. Assume the positive direction is upward. Velocity (m/s) 3.0 2.5 2.0 1.5 1.0 0.5 0 0 5.0 10 15 20 25 Time (s) (a) Briefly describe the motion of the elevator. Justify your description with reference to the graph. (b) Assume the elevator starts from an initial position of y = 0 at t=0. Deriving any numerical values you need from the graph: i. Write an equation for the position as a function of time for the elevator from t=0 to t = 3.0 seconds. ii. Write an equation for the position as a function of time for the elevator from t = 3.0 seconds to t = 19 seconds. (c) A student of weight mg gets on the elevator and rides the elevator during the time interval shown in the graph. Consider the force of con- tact, F, between the floor and the student. How Justify your answer with reference to the graph does F compare to mg at the following times? and your equations above. i. = 1.0 s ii. = 10.0 s
Students are asked to use circular motion to measure the coefficient of static friction between two materials. They have a round turntable with a surface made from one of the materials, for which they can vary the speed of rotation. They also have a small block of mass m made from the sec- ond material. A rough sketch of the apparatus is shown in the figure below. Additionally they have equipment normally found in a physics classroom. Axis m (a) Briefly describe a procedure that would allow you to use this apparatus to calculate the coefficient of static friction, u. (b) Based on your procedure, determine how to analyze the data collected to calculate the coefficient of friction. (c) One group of students collects the following data. r (m) fm (rev/s) 0.050 1.30 0.10 0.88 0.15 0.74 0.20 0.61 0.25 0.58 i. Use the empty spaces in the table as needed to calculate quantities that would allow you to use the slope of a line graph to calculate the coefficient of friction, providing labels with…

Chapter 30 Solutions

Physics for Scientists and Engineers With Modern Physics

Ch. 30 - A long, vertical, metallic wire carries downward...Ch. 30 - Suppose you are facing a tall makeup mirror on a...Ch. 30 - Prob. 8OQCh. 30 - Prob. 9OQCh. 30 - Consider the two parallel wires carrying currents...Ch. 30 - Prob. 11OQCh. 30 - A long solenoid with closely spaced turns carries...Ch. 30 - Prob. 13OQCh. 30 - Prob. 14OQCh. 30 - Prob. 15OQCh. 30 - Prob. 1CQCh. 30 - Prob. 2CQCh. 30 - Prob. 3CQCh. 30 - A hollow copper tube carries a current along its...Ch. 30 - Prob. 5CQCh. 30 - Prob. 6CQCh. 30 - Prob. 7CQCh. 30 - Prob. 8CQCh. 30 - Prob. 9CQCh. 30 - Prob. 10CQCh. 30 - Prob. 11CQCh. 30 - Prob. 12CQCh. 30 - Prob. 1PCh. 30 - Prob. 2PCh. 30 - Prob. 3PCh. 30 - Calculate the magnitude of the magnetic field at a...Ch. 30 - Prob. 5PCh. 30 - In Niels Bohrs 1913 model of the hydrogen atom, an...Ch. 30 - Prob. 7PCh. 30 - Prob. 8PCh. 30 - Prob. 9PCh. 30 - Prob. 10PCh. 30 - Prob. 11PCh. 30 - Consider a flat, circular current loop of radius R...Ch. 30 - Prob. 13PCh. 30 - One long wire carries current 30.0 A to the left...Ch. 30 - Prob. 15PCh. 30 - Prob. 16PCh. 30 - Prob. 17PCh. 30 - Prob. 18PCh. 30 - Prob. 19PCh. 30 - Prob. 20PCh. 30 - Prob. 21PCh. 30 - Prob. 22PCh. 30 - Prob. 23PCh. 30 - Prob. 24PCh. 30 - Prob. 25PCh. 30 - Prob. 26PCh. 30 - Prob. 27PCh. 30 - Why is the following situation impossible? Two...Ch. 30 - Prob. 29PCh. 30 - Prob. 30PCh. 30 - Prob. 31PCh. 30 - The magnetic coils of a tokamak fusion reactor are...Ch. 30 - Prob. 33PCh. 30 - An infinite sheet of current lying in the yz plane...Ch. 30 - Prob. 35PCh. 30 - A packed bundle of 100 long, straight, insulated...Ch. 30 - Prob. 37PCh. 30 - Prob. 38PCh. 30 - Prob. 39PCh. 30 - Prob. 40PCh. 30 - A long solenoid that has 1 000 turns uniformly...Ch. 30 - Prob. 42PCh. 30 - Prob. 43PCh. 30 - Prob. 44PCh. 30 - Prob. 45PCh. 30 - Prob. 46PCh. 30 - A cube of edge length l = 2.50 cm is positioned as...Ch. 30 - Prob. 48PCh. 30 - Prob. 49PCh. 30 - Prob. 50PCh. 30 - Prob. 51APCh. 30 - Prob. 52APCh. 30 - Prob. 53APCh. 30 - Why is the following situation impossible? The...Ch. 30 - Prob. 55APCh. 30 - Prob. 56APCh. 30 - Prob. 57APCh. 30 - Prob. 58APCh. 30 - A very large parallel-plate capacitor has uniform...Ch. 30 - Prob. 60APCh. 30 - Prob. 61APCh. 30 - Prob. 62APCh. 30 - Prob. 63APCh. 30 - Prob. 64APCh. 30 - Prob. 65APCh. 30 - Prob. 66APCh. 30 - Prob. 67APCh. 30 - Prob. 68APCh. 30 - Prob. 69CPCh. 30 - Prob. 70CPCh. 30 - Prob. 71CPCh. 30 - Prob. 72CPCh. 30 - Prob. 73CPCh. 30 - Prob. 74CPCh. 30 - Prob. 75CPCh. 30 - Prob. 76CPCh. 30 - Prob. 77CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning