COLLEGE PHYICS
COLLEGE PHYICS
5th Edition
ISBN: 9781266793394
Author: GIAMBATTISTA
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 3, Problem 88P

(a)

To determine

The direction dolphin must head.

(a)

Expert Solution
Check Mark

Answer to Problem 88P

The dolphin must head 30.0°_ north of west.

Explanation of Solution

Consider the positive x direction to be west, and positive y direction to be north.

Figure 1 represents the relative motion of the dolphin with respect to the bay and uniform water current.

COLLEGE PHYICS, Chapter 3, Problem 88P

Write the expression for velocity of dolphin with respect to bay.

    vdb=vdw+vwb        (I)

Here, vdb is the velocity of dolphin with respect to bay, vdw is the velocity of dolphin with respect to the water current, and vwb is the velocity of the water current with respect to the bay.

Write the expression for component of velocity of the dolphin with respect to bay in the x direction.

    vdbx=vdwx+vwbx

Here, vdbx is the velocity of the dolphin with respect to bay in the x direction, vdwx is the velocity of the dolphin with respect to the water current in the x direction, and vwbx is the velocity of the water current with respect to bay in the y direction.

From Figure 1 the above equation is written as

    vdbx=vdwcosθvwbcos45°=vdwcosθvwb2        (II)

Write the expression for component of velocity of the dolphin with respect to bay in the y direction.

    vdby=vdwy+vwby

Here, vdby is the velocity of the dolphin with respect to bay in the y direction, vdwy is the velocity of the dolphin with respect to the water current in the y direction, and vwby is the velocity of the water current with respect to bay in the y direction

From Figure 1 the above equation can be written as

    vdby=vdwsinθvwbsin45°=vdwsinθvwb2        (III)

Since vdby=0, the above is reduced to

    0=vdwsinθvwb2sinθ=vwbvdw2θ=sin1(vwbvdw2)        (IV)

Conclusion:

Substitute 2.83m/s for vwb, and 4.00m/s for vdw in equation (IV), to find θ.

    θ=sin1(2.83m/s(4.00m/s)2)=30.0°

The dolphin should head 30.0° north of west.

Therefore, the dolphin must head 30.0°_ north of west.

(b)

To determine

The time taken by the dolphin to swim 0.80km distant home.

(b)

Expert Solution
Check Mark

Answer to Problem 88P

The time taken by the dolphin to swim 0.80km distant home is 5.47×104s_.

Explanation of Solution

Write the expression for time taken by the dolphin to swim 0.80km distant home.

    Δt=Δxvdbx        (V)

Here, Δt is the time taken by the dolphin to swim 0.80km distant home, Δx is the distance travelled by the dolphin, and vdbx is the component of velocity of the dolphin with respect to bay in the x direction.

From subpart (a), vdbx is derived as vdwcosθvwb2.

Use the above condition in equation (V).

    Δt=Δxvdwcosθvwb2        (VI)

Conclusion:

Substitute 4.00m/s for vdw, 2.83m/s for vwb 0.80km for Δx, and 30.0° for θ in equation (VI), to find Δt.

    Δt=0.80km×1m103km(4.00m/s)cos30.0°2.83m/s2=0.80×103m3.46m/s2.00m/s=5.47×104s

Therefore, the time taken by the dolphin to swim 0.80km distant home is 5.47×104s_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
For each of the actions depicted below, a magnet and/or metal loop moves with velocity v→ (v→ is constant and has the same magnitude in all parts). Determine whether a current is induced in the metal loop. If so, indicate the direction of the current in the loop, either clockwise or counterclockwise when seen from the right of the loop. The axis of the magnet is lined up with the center of the loop. For the action depicted in (Figure 5), indicate the direction of the induced current in the loop (clockwise, counterclockwise or zero, when seen from the right of the loop). I know that the current is clockwise, I just dont understand why. Please fully explain why it's clockwise, Thank you
A planar double pendulum consists of two point masses \[m_1 = 1.00~\mathrm{kg}, \qquad m_2 = 1.00~\mathrm{kg}\]connected by massless, rigid rods of lengths \[L_1 = 1.00~\mathrm{m}, \qquad L_2 = 1.20~\mathrm{m}.\]The upper rod is hinged to a fixed pivot; gravity acts vertically downward with\[g = 9.81~\mathrm{m\,s^{-2}}.\]Define the generalized coordinates \(\theta_1,\theta_2\) as the angles each rod makes with thedownward vertical (positive anticlockwise, measured in radians unless stated otherwise).At \(t=0\) the system is released from rest with \[\theta_1(0)=120^{\circ}, \qquad\theta_2(0)=-10^{\circ}, \qquad\dot{\theta}_1(0)=\dot{\theta}_2(0)=0 .\]Using the exact nonlinear equations of motion (no small-angle or planar-pendulumapproximations) and assuming the rods never stretch or slip, determine the angle\(\theta_2\) at the instant\[t = 10.0~\mathrm{s}.\]Give the result in degrees, in the interval \((-180^{\circ},180^{\circ}]\).
What are the expected readings of the ammeter and voltmeter for the circuit in the figure below? (R = 5.60 Ω, ΔV = 6.30 V) ammeter     I =

Chapter 3 Solutions

COLLEGE PHYICS

Ch. 3.3 - Prob. 3.6PPCh. 3.3 - Prob. 3.3BCPCh. 3.3 - Prob. 3.7PPCh. 3.3 - Prob. 3.3CCPCh. 3.4 - The wheels fall off Beatrice’s suitcase, so she...Ch. 3.4 - Prob. 3.9PPCh. 3.4 - Prob. 3.10PPCh. 3.4 - Prob. 3.11PPCh. 3.5 - Prob. 3.5CPCh. 3.5 - Prob. 3.12PPCh. 3.5 - Prob. 3.13PPCh. 3 - Prob. 1CQCh. 3 - Prob. 2CQCh. 3 - Prob. 3CQCh. 3 - Prob. 4CQCh. 3 - Prob. 5CQCh. 3 - Prob. 6CQCh. 3 - Prob. 7CQCh. 3 - Prob. 8CQCh. 3 - Prob. 9CQCh. 3 - Prob. 10CQCh. 3 - Prob. 11CQCh. 3 - Prob. 12CQCh. 3 - Prob. 13CQCh. 3 - Prob. 14CQCh. 3 - Prob. 15CQCh. 3 - Tell whether each of the following objects has a...Ch. 3 - Prob. 17CQCh. 3 - Prob. 18CQCh. 3 - Prob. 21CQCh. 3 - Prob. 1MCQCh. 3 - Prob. 2MCQCh. 3 - Prob. 3MCQCh. 3 - Prob. 4MCQCh. 3 - Prob. 5MCQCh. 3 - Prob. 6MCQCh. 3 - Prob. 7MCQCh. 3 - Prob. 8MCQCh. 3 - Multiple-Choice Questions 7–16. A jogger is...Ch. 3 - Prob. 10MCQCh. 3 - Prob. 11MCQCh. 3 - Prob. 12MCQCh. 3 - Prob. 14MCQCh. 3 - Prob. 15MCQCh. 3 - Prob. 16MCQCh. 3 - Prob. 17MCQCh. 3 - Prob. 18MCQCh. 3 - Prob. 19MCQCh. 3 - Prob. 20MCQCh. 3 - Prob. 21MCQCh. 3 - Prob. 22MCQCh. 3 - Prob. 23MCQCh. 3 - Prob. 24MCQCh. 3 - Prob. 25MCQCh. 3 - Prob. 26MCQCh. 3 - Prob. 27MCQCh. 3 - Prob. 28MCQCh. 3 - Prob. 29MCQCh. 3 - Prob. 30MCQCh. 3 - Prob. 31MCQCh. 3 - Prob. 32MCQCh. 3 - Prob. 33MCQCh. 3 - Prob. 34MCQCh. 3 - Prob. 1PCh. 3 - Prob. 2PCh. 3 - Prob. 3PCh. 3 - Prob. 4PCh. 3 - Prob. 5PCh. 3 - Prob. 6PCh. 3 - Prob. 7PCh. 3 - Prob. 8PCh. 3 - Prob. 9PCh. 3 - Prob. 10PCh. 3 - You will be hiking to a lake with some of your...Ch. 3 - Prob. 12PCh. 3 - Prob. 13PCh. 3 - Prob. 14PCh. 3 - Prob. 15PCh. 3 - Prob. 16PCh. 3 - Prob. 17PCh. 3 - Prob. 18PCh. 3 - Prob. 19PCh. 3 - Prob. 20PCh. 3 - Prob. 21PCh. 3 - Prob. 22PCh. 3 - Prob. 23PCh. 3 - Prob. 24PCh. 3 - Prob. 26PCh. 3 - Prob. 27PCh. 3 - Prob. 28PCh. 3 - Prob. 29PCh. 3 - Prob. 30PCh. 3 - Prob. 31PCh. 3 - Prob. 32PCh. 3 - Prob. 33PCh. 3 - Prob. 34PCh. 3 - Prob. 35PCh. 3 - Prob. 36PCh. 3 - Prob. 37PCh. 3 - Prob. 38PCh. 3 - Prob. 39PCh. 3 - Prob. 41PCh. 3 - Prob. 42PCh. 3 - Prob. 43PCh. 3 - Prob. 44PCh. 3 - Prob. 45PCh. 3 - Prob. 46PCh. 3 - Prob. 48PCh. 3 - Prob. 49PCh. 3 - Prob. 50PCh. 3 - Prob. 51PCh. 3 - Prob. 53PCh. 3 - Prob. 54PCh. 3 - Prob. 55PCh. 3 - Prob. 56PCh. 3 - Prob. 57PCh. 3 - Prob. 59PCh. 3 - Prob. 60PCh. 3 - Prob. 61PCh. 3 - Prob. 62PCh. 3 - Prob. 63PCh. 3 - Prob. 64PCh. 3 - Prob. 65PCh. 3 - Prob. 66PCh. 3 - Prob. 67PCh. 3 - Prob. 68PCh. 3 - Prob. 69PCh. 3 - Prob. 70PCh. 3 - Prob. 71PCh. 3 - Prob. 72PCh. 3 - Prob. 73PCh. 3 - Prob. 74PCh. 3 - Prob. 75PCh. 3 - Prob. 76PCh. 3 - Prob. 77PCh. 3 - Prob. 78PCh. 3 - Prob. 79PCh. 3 - Prob. 80PCh. 3 - Prob. 82PCh. 3 - Prob. 83PCh. 3 - Prob. 84PCh. 3 - Prob. 86PCh. 3 - Prob. 87PCh. 3 - Prob. 88PCh. 3 - Prob. 89PCh. 3 - Prob. 91PCh. 3 - Prob. 92PCh. 3 - Prob. 93PCh. 3 - An elevator starts at rest on the ninth floor. At...Ch. 3 - Prob. 95PCh. 3 - Prob. 96PCh. 3 - Prob. 98PCh. 3 - Prob. 99PCh. 3 - Prob. 100PCh. 3 - Prob. 101PCh. 3 - Prob. 102PCh. 3 - Prob. 103PCh. 3 - Prob. 104PCh. 3 - Prob. 105PCh. 3 - Prob. 106PCh. 3 - Prob. 107PCh. 3 - Prob. 108PCh. 3 - Prob. 109PCh. 3 - Prob. 110PCh. 3 - Prob. 112PCh. 3 - Prob. 113PCh. 3 - Prob. 114PCh. 3 - Prob. 115PCh. 3 - Prob. 116PCh. 3 - Prob. 117PCh. 3 - Prob. 118PCh. 3 - Prob. 119PCh. 3 - Prob. 120PCh. 3 - Prob. 121PCh. 3 - Prob. 122PCh. 3 - Prob. 123PCh. 3 - Prob. 124PCh. 3 - Prob. 126P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Relative Velocity - Basic Introduction; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=_39hCnqbNXM;License: Standard YouTube License, CC-BY