COLLEGE PHYICS
COLLEGE PHYICS
5th Edition
ISBN: 9781266793394
Author: GIAMBATTISTA
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 3, Problem 88P

(a)

To determine

The direction dolphin must head.

(a)

Expert Solution
Check Mark

Answer to Problem 88P

The dolphin must head 30.0°_ north of west.

Explanation of Solution

Consider the positive x direction to be west, and positive y direction to be north.

Figure 1 represents the relative motion of the dolphin with respect to the bay and uniform water current.

COLLEGE PHYICS, Chapter 3, Problem 88P

Write the expression for velocity of dolphin with respect to bay.

    vdb=vdw+vwb        (I)

Here, vdb is the velocity of dolphin with respect to bay, vdw is the velocity of dolphin with respect to the water current, and vwb is the velocity of the water current with respect to the bay.

Write the expression for component of velocity of the dolphin with respect to bay in the x direction.

    vdbx=vdwx+vwbx

Here, vdbx is the velocity of the dolphin with respect to bay in the x direction, vdwx is the velocity of the dolphin with respect to the water current in the x direction, and vwbx is the velocity of the water current with respect to bay in the y direction.

From Figure 1 the above equation is written as

    vdbx=vdwcosθvwbcos45°=vdwcosθvwb2        (II)

Write the expression for component of velocity of the dolphin with respect to bay in the y direction.

    vdby=vdwy+vwby

Here, vdby is the velocity of the dolphin with respect to bay in the y direction, vdwy is the velocity of the dolphin with respect to the water current in the y direction, and vwby is the velocity of the water current with respect to bay in the y direction

From Figure 1 the above equation can be written as

    vdby=vdwsinθvwbsin45°=vdwsinθvwb2        (III)

Since vdby=0, the above is reduced to

    0=vdwsinθvwb2sinθ=vwbvdw2θ=sin1(vwbvdw2)        (IV)

Conclusion:

Substitute 2.83m/s for vwb, and 4.00m/s for vdw in equation (IV), to find θ.

    θ=sin1(2.83m/s(4.00m/s)2)=30.0°

The dolphin should head 30.0° north of west.

Therefore, the dolphin must head 30.0°_ north of west.

(b)

To determine

The time taken by the dolphin to swim 0.80km distant home.

(b)

Expert Solution
Check Mark

Answer to Problem 88P

The time taken by the dolphin to swim 0.80km distant home is 5.47×104s_.

Explanation of Solution

Write the expression for time taken by the dolphin to swim 0.80km distant home.

    Δt=Δxvdbx        (V)

Here, Δt is the time taken by the dolphin to swim 0.80km distant home, Δx is the distance travelled by the dolphin, and vdbx is the component of velocity of the dolphin with respect to bay in the x direction.

From subpart (a), vdbx is derived as vdwcosθvwb2.

Use the above condition in equation (V).

    Δt=Δxvdwcosθvwb2        (VI)

Conclusion:

Substitute 4.00m/s for vdw, 2.83m/s for vwb 0.80km for Δx, and 30.0° for θ in equation (VI), to find Δt.

    Δt=0.80km×1m103km(4.00m/s)cos30.0°2.83m/s2=0.80×103m3.46m/s2.00m/s=5.47×104s

Therefore, the time taken by the dolphin to swim 0.80km distant home is 5.47×104s_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
When current is flowing through the coil, the direction of the torque can be thought of in two ways. Either as the result of the forces on current carrying wires, or as a magnetic dipole moment trying to line up with an external field (e.g. like a compass). Note: the magnetic moment of a coil points in the direction of the coil's magnetic field at the center of the coil. d) Forces: We can consider the left-most piece of the loop (labeled ○) as a short segment of straight wire carrying current directly out of the page at us. Similarly, we can consider the right-most piece of the loop (labeled ) as a short segment straight wire carrying current directly into the page, away from us. Add to the picture below the two forces due to the external magnetic field acting on these two segments. Then describe how these two forces give a torque and determine if the torque acts to rotate the loop clockwise or counterclockwise according to this picture? B
In each of the following, solve the problem stated. Express your answers in three significant figures. No unit is considered incorrect. 1. For the circuit shown, determine all the currents in each branch using Kirchhoff's Laws. (3 points) 6 5V 2 B C 4 A www 6 VT ww T10 V F E 2. Compute for the total power dissipation of the circuit in previous item. (1 point) 3. Use Maxwell's Mesh to find Ix and VAB for the circuit shown. (3 points) Ix 50 V 20 ww 21x B 4. Calculate all the currents in each branch using Maxwell's Mesh for the circuit shown. (3 points) www 5ი 10 24V 2A 2002 36V
If the mass of substance (1 kg), initial temperature (125˚C), the final temperature (175˚C) and the total volume of a closed container (1 m3) remains constant in two experiments, but one experiment is done with water ( ) and the other is done with nitrogen ( ). What is the difference in the change in pressure between water and nitrogen?

Chapter 3 Solutions

COLLEGE PHYICS

Ch. 3.3 - Prob. 3.6PPCh. 3.3 - Prob. 3.3BCPCh. 3.3 - Prob. 3.7PPCh. 3.3 - Prob. 3.3CCPCh. 3.4 - The wheels fall off Beatrice’s suitcase, so she...Ch. 3.4 - Prob. 3.9PPCh. 3.4 - Prob. 3.10PPCh. 3.4 - Prob. 3.11PPCh. 3.5 - Prob. 3.5CPCh. 3.5 - Prob. 3.12PPCh. 3.5 - Prob. 3.13PPCh. 3 - Prob. 1CQCh. 3 - Prob. 2CQCh. 3 - Prob. 3CQCh. 3 - Prob. 4CQCh. 3 - Prob. 5CQCh. 3 - Prob. 6CQCh. 3 - Prob. 7CQCh. 3 - Prob. 8CQCh. 3 - Prob. 9CQCh. 3 - Prob. 10CQCh. 3 - Prob. 11CQCh. 3 - Prob. 12CQCh. 3 - Prob. 13CQCh. 3 - Prob. 14CQCh. 3 - Prob. 15CQCh. 3 - Tell whether each of the following objects has a...Ch. 3 - Prob. 17CQCh. 3 - Prob. 18CQCh. 3 - Prob. 21CQCh. 3 - Prob. 1MCQCh. 3 - Prob. 2MCQCh. 3 - Prob. 3MCQCh. 3 - Prob. 4MCQCh. 3 - Prob. 5MCQCh. 3 - Prob. 6MCQCh. 3 - Prob. 7MCQCh. 3 - Prob. 8MCQCh. 3 - Multiple-Choice Questions 7–16. A jogger is...Ch. 3 - Prob. 10MCQCh. 3 - Prob. 11MCQCh. 3 - Prob. 12MCQCh. 3 - Prob. 14MCQCh. 3 - Prob. 15MCQCh. 3 - Prob. 16MCQCh. 3 - Prob. 17MCQCh. 3 - Prob. 18MCQCh. 3 - Prob. 19MCQCh. 3 - Prob. 20MCQCh. 3 - Prob. 21MCQCh. 3 - Prob. 22MCQCh. 3 - Prob. 23MCQCh. 3 - Prob. 24MCQCh. 3 - Prob. 25MCQCh. 3 - Prob. 26MCQCh. 3 - Prob. 27MCQCh. 3 - Prob. 28MCQCh. 3 - Prob. 29MCQCh. 3 - Prob. 30MCQCh. 3 - Prob. 31MCQCh. 3 - Prob. 32MCQCh. 3 - Prob. 33MCQCh. 3 - Prob. 34MCQCh. 3 - Prob. 1PCh. 3 - Prob. 2PCh. 3 - Prob. 3PCh. 3 - Prob. 4PCh. 3 - Prob. 5PCh. 3 - Prob. 6PCh. 3 - Prob. 7PCh. 3 - Prob. 8PCh. 3 - Prob. 9PCh. 3 - Prob. 10PCh. 3 - You will be hiking to a lake with some of your...Ch. 3 - Prob. 12PCh. 3 - Prob. 13PCh. 3 - Prob. 14PCh. 3 - Prob. 15PCh. 3 - Prob. 16PCh. 3 - Prob. 17PCh. 3 - Prob. 18PCh. 3 - Prob. 19PCh. 3 - Prob. 20PCh. 3 - Prob. 21PCh. 3 - Prob. 22PCh. 3 - Prob. 23PCh. 3 - Prob. 24PCh. 3 - Prob. 26PCh. 3 - Prob. 27PCh. 3 - Prob. 28PCh. 3 - Prob. 29PCh. 3 - Prob. 30PCh. 3 - Prob. 31PCh. 3 - Prob. 32PCh. 3 - Prob. 33PCh. 3 - Prob. 34PCh. 3 - Prob. 35PCh. 3 - Prob. 36PCh. 3 - Prob. 37PCh. 3 - Prob. 38PCh. 3 - Prob. 39PCh. 3 - Prob. 41PCh. 3 - Prob. 42PCh. 3 - Prob. 43PCh. 3 - Prob. 44PCh. 3 - Prob. 45PCh. 3 - Prob. 46PCh. 3 - Prob. 48PCh. 3 - Prob. 49PCh. 3 - Prob. 50PCh. 3 - Prob. 51PCh. 3 - Prob. 53PCh. 3 - Prob. 54PCh. 3 - Prob. 55PCh. 3 - Prob. 56PCh. 3 - Prob. 57PCh. 3 - Prob. 59PCh. 3 - Prob. 60PCh. 3 - Prob. 61PCh. 3 - Prob. 62PCh. 3 - Prob. 63PCh. 3 - Prob. 64PCh. 3 - Prob. 65PCh. 3 - Prob. 66PCh. 3 - Prob. 67PCh. 3 - Prob. 68PCh. 3 - Prob. 69PCh. 3 - Prob. 70PCh. 3 - Prob. 71PCh. 3 - Prob. 72PCh. 3 - Prob. 73PCh. 3 - Prob. 74PCh. 3 - Prob. 75PCh. 3 - Prob. 76PCh. 3 - Prob. 77PCh. 3 - Prob. 78PCh. 3 - Prob. 79PCh. 3 - Prob. 80PCh. 3 - Prob. 82PCh. 3 - Prob. 83PCh. 3 - Prob. 84PCh. 3 - Prob. 86PCh. 3 - Prob. 87PCh. 3 - Prob. 88PCh. 3 - Prob. 89PCh. 3 - Prob. 91PCh. 3 - Prob. 92PCh. 3 - Prob. 93PCh. 3 - An elevator starts at rest on the ninth floor. At...Ch. 3 - Prob. 95PCh. 3 - Prob. 96PCh. 3 - Prob. 98PCh. 3 - Prob. 99PCh. 3 - Prob. 100PCh. 3 - Prob. 101PCh. 3 - Prob. 102PCh. 3 - Prob. 103PCh. 3 - Prob. 104PCh. 3 - Prob. 105PCh. 3 - Prob. 106PCh. 3 - Prob. 107PCh. 3 - Prob. 108PCh. 3 - Prob. 109PCh. 3 - Prob. 110PCh. 3 - Prob. 112PCh. 3 - Prob. 113PCh. 3 - Prob. 114PCh. 3 - Prob. 115PCh. 3 - Prob. 116PCh. 3 - Prob. 117PCh. 3 - Prob. 118PCh. 3 - Prob. 119PCh. 3 - Prob. 120PCh. 3 - Prob. 121PCh. 3 - Prob. 122PCh. 3 - Prob. 123PCh. 3 - Prob. 124PCh. 3 - Prob. 126P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Relative Velocity - Basic Introduction; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=_39hCnqbNXM;License: Standard YouTube License, CC-BY