Concept explainers
Problems 74 and 75 are paired.
74. N A classroom clock has a small magnifying glass embedded near the end of the minute hand. The magnifying glass may be modeled as a particle. Class begins at 7:55 and ends at 8:50. The length of the minute hand is 0.300 m. a. Find the average velocity of the magnifying glass at the end of the minute hand using the coordinate system shown in Figure P3.74. Give your answer in component form. b. Find the magnitude and direction of the average velocity. c. Find the average speed and in the CHECK and THINK step, compare to the average velocity.
(a)
![Check Mark](/static/check-mark.png)
The average velocity of the magnifying glass at the end of the minute hand using the coordinate system.
Answer to Problem 74PQ
The average velocity of the magnifying glass is
Explanation of Solution
Write the expression for the average velocity.
Here,
The initial position of the minute hand is given by,
The final position of the minute hand is given by,
Conclusion:
It takes
Therefore, the average velocity of the magnifying glass is
(b)
![Check Mark](/static/check-mark.png)
The magnitude and the direction of the average velocity.
Answer to Problem 74PQ
The magnitude and the direction of the average velocity is
Explanation of Solution
The magnitude of the average velocity is given by taking the square root of the sum of the squares of the
The magnitude of the average velocity is,
The direction of the average velocity is given by,
Conclusion:
Substitute
Therefore, the magnitude and the direction of the average velocity is
(c)
![Check Mark](/static/check-mark.png)
The comparison of average speed with the average velocity.
Answer to Problem 74PQ
The speed is about an order of magnitude larger because the distance traveled is much larger than the displacement at that time.
Explanation of Solution
The average speed is the total distance traveled in the time the clock hand moves from the initial to the final position. The distance traveled is 55 out of the 60 of the circumference traced out by the end of the minute hand which can be expressed as,
Write the expression for the displacement.
Here,
Conclusion:
Substitute
Substitute
Comparing the value of displacement and distance the magnitude is larger for the distance so that the magnitude of the speed will be higher than the magnitude of the average velocity.
Therefore, the speed is about an order of magnitude larger because the distance traveled is much larger than the displacement at that time.
Want to see more full solutions like this?
Chapter 3 Solutions
EBK WEBASSIGN FOR KATZ'S PHYSICS FOR SC
- A particular water pipe has a radius of 0.28 meters. If the pipe is completely filled with water, moving with average velocity 0.45 m/s, what is the flow rate of water through the pipe with units of cubic meters of water per second?arrow_forwardWater is flowing through a horizontal pipe with two segments. In one segment, the water flows at a speed v1 = 4.52 m/s. In the second segment the speed of the water is v2 = 2.38 m/s. Based on Bernoulli's Principle, what is the difference in pressure (P2 - P1) between the two segments? Assume that the density of the water is 997 kg/m3 and give your answer as the number of Pascals (i.e. N/m2).arrow_forwardWater from the faucet is supplied to the hose at a rate of 0.00057 m3/s. At what speed (number of meters per second) does the water exit the nozzle if the cross sectional area of the narrow nozzle is 2.1 x 10-6 m2?arrow_forward
- Jason Fruits/Indiana University Research Communications Silver/ silver oxide Zinc zinc/oxidearrow_forwardCar P moves to the west with constant speed v0 along a straight road. Car Q starts from rest at instant 1, and moves to the west with increasing speed. At instant 5, car Q has speed w0 relative to the road (w0 < v0). Instants 1-5 are separated by equal time intervals. At instant 3, cars P and Q are adjacent to one another (i.e., they have the same position). In the reference frame o f the road, at instant 3 i s the speed o f car Q greater than, less than, or equal to the speed of car P? Explain.arrow_forwardCar P moves to the west with constant speed v0 along a straight road. Car Q starts from rest at instant 1, and moves to the west with increasing speed. At instant 5, car Q has speed w0 relative to the road (w0 < v0). Instants 1-5 are separated by equal time intervals.arrow_forward
- Car P moves to the west with constant speed v0 along a straight road. Car Q starts from rest at instant 1, and moves to the west with increasing speed. At instant 5, car Q has speed w0 relative to the road (w0 < v0). Instants 1-5 are separated by equal time intervals. Sketch and label a vector diagram illustrating the Galilean transformation of velocities that relates velocity of car P relative to the road, velocity of car Q relative to road, and velocity of car Q relative to car P at instant 3. In the frame of car P, at instant 3 is car Q moving to the west, moving to the east, or at rest? Explain.arrow_forwardJust 5 and 6 don't mind 7arrow_forwardIn an electron gun, electrons are accelerated through a region with an electric field of magnitude 1.5 × 104 N/C for a distance of 2.5 cm. If the electrons start from rest, how fast are they moving after traversing the gun?arrow_forward
- Please solve and answer this problem correctly please. Thank you!!arrow_forwardPlease solve and answer this problem correctly please. Thank you!!arrow_forwarda) Use the node-voltage method to find v1, v2, and v3 in the circuit in Fig. P4.14. b) How much power does the 40 V voltage source deliver to the circuit? Figure P4.14 302 202 w w + + + 40 V V1 80 Ω 02 ΣΑΩ 28 A V3 + w w 102 202arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078807213/9780078807213_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168277/9781938168277_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534408961/9780534408961_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168000/9781938168000_smallCoverImage.gif)