Concept explainers
Problems 74 and 75 are paired.
74. N A classroom clock has a small magnifying glass embedded near the end of the minute hand. The magnifying glass may be modeled as a particle. Class begins at 7:55 and ends at 8:50. The length of the minute hand is 0.300 m. a. Find the average velocity of the magnifying glass at the end of the minute hand using the coordinate system shown in Figure P3.74. Give your answer in component form. b. Find the magnitude and direction of the average velocity. c. Find the average speed and in the CHECK and THINK step, compare to the average velocity.
(a)
The average velocity of the magnifying glass at the end of the minute hand using the coordinate system.
Answer to Problem 74PQ
The average velocity of the magnifying glass is
Explanation of Solution
Write the expression for the average velocity.
Here,
The initial position of the minute hand is given by,
The final position of the minute hand is given by,
Conclusion:
It takes
Therefore, the average velocity of the magnifying glass is
(b)
The magnitude and the direction of the average velocity.
Answer to Problem 74PQ
The magnitude and the direction of the average velocity is
Explanation of Solution
The magnitude of the average velocity is given by taking the square root of the sum of the squares of the
The magnitude of the average velocity is,
The direction of the average velocity is given by,
Conclusion:
Substitute
Therefore, the magnitude and the direction of the average velocity is
(c)
The comparison of average speed with the average velocity.
Answer to Problem 74PQ
The speed is about an order of magnitude larger because the distance traveled is much larger than the displacement at that time.
Explanation of Solution
The average speed is the total distance traveled in the time the clock hand moves from the initial to the final position. The distance traveled is 55 out of the 60 of the circumference traced out by the end of the minute hand which can be expressed as,
Write the expression for the displacement.
Here,
Conclusion:
Substitute
Substitute
Comparing the value of displacement and distance the magnitude is larger for the distance so that the magnitude of the speed will be higher than the magnitude of the average velocity.
Therefore, the speed is about an order of magnitude larger because the distance traveled is much larger than the displacement at that time.
Want to see more full solutions like this?
Chapter 3 Solutions
Webassign Printed Access Card For Katz's Physics For Scientists And Engineers: Foundations And Connections, 1st Edition, Single-term
- air is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forward
- No chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forwardCalculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forward
- How can i solve this if n1 (refractive index of gas) and n2 (refractive index of plastic) is not known. And the brewsters angle isn't knownarrow_forward2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward2-3. Consider the situation of the reflection of a pulse at the interface of two string described in the previous problem. In addition to the net disturbances being equal at the junction, the slope of the net disturbances must also be equal at the junction at all times. Given that p1 = 4.0 g/m, H2 = 9.0 g/m and Aj = 0.50 cm find 2. A, (Answer: -0.10 cm) and 3. Ay. (Answer: 0.40 cm)please I need to show all work step by step problems 2 and 3arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning