The shot put is a track-and-field event in which athletes throw a heavy ball—the shot—as far as possible. The best athletes can throw the shot as far as 23 m. Athletes who use the “glide” technique push the shot outward in a reasonably straight line, accelerating it over a distance of about 2.0 m. What acceleration do they provide to the shot as they push on it? Assume that the shot is launched at an angle of 37°, a reasonable value for an excellent throw. You can assume that the shot lands at the same height from which it is thrown; this simplifies the calculation considerably, and makes only a small difference in the final result.
The shot put is a track-and-field event in which athletes throw a heavy ball—the shot—as far as possible. The best athletes can throw the shot as far as 23 m. Athletes who use the “glide” technique push the shot outward in a reasonably straight line, accelerating it over a distance of about 2.0 m. What acceleration do they provide to the shot as they push on it? Assume that the shot is launched at an angle of 37°, a reasonable value for an excellent throw. You can assume that the shot lands at the same height from which it is thrown; this simplifies the calculation considerably, and makes only a small difference in the final result.
The shot put is a track-and-field event in which athletes throw a heavy ball—the shot—as far as possible. The best athletes can throw the shot as far as 23 m. Athletes who use the “glide” technique push the shot outward in a reasonably straight line, accelerating it over a distance of about 2.0 m. What acceleration do they provide to the shot as they push on it? Assume that the shot is launched at an angle of 37°, a reasonable value for an excellent throw. You can assume that the shot lands at the same height from which it is thrown; this simplifies the calculation considerably, and makes only a small difference in the final result.
Part A
m
2πkT
) 3/2
Calculate the integral (v) = f vƒ (v)dv. The function f(v) describing the actual distribution of molecular speeds is called the Maxwell-Boltzmann distribution,
=
ƒ(v) = 4π (· v²e-mv²/2kT
. (Hint: Make the change of variable v² =x and use the tabulated integral foxne
integer and a is a positive constant.)
Express your answer in terms of the variables T, m, and appropriate constants.
-ax dx
n!
-
an+1
where n is a positive
(v)
=
ΕΠΙ ΑΣΦ
Submit Previous Answers Request Answer
?
× Incorrect; Try Again; 4 attempts remaining
Al Study Tools
Looking for some guidance? Let's work through a few related
practice questions before you go back to the real thing.
This won't impact your score, so stop at anytime and ask for
clarification whenever you need it.
Ready to give it a try?
Start
Starter the rule of significant
Please solve this problem and give step by step explanations on each step while breaking it down please. Thank you!!
Chapter 3 Solutions
Student Workbook for College Physics: A Strategic Approach Volume 1 (Chs. 1-16)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.