Concept explainers
When solid silicon tetrachloride reacts with water, solid silicon dioxide and hydrogen chloride gas are formed.
(a) Write a balanced equation for the reaction.
(b) In an experiment, 45.00 g of silicon tetrachloride are treated with 45.00 mL of water
(c) When the reaction is complete, 17.8 L of HCl gas (
(d) How much of the reactant in excess is unused?
Trending nowThis is a popular solution!
Chapter 3 Solutions
PRINCIPLES+REACTIONS
- What is the mass of fish, in kilograms, that one would have to consume to obtain a fatal dose of mercury, if the fish contains 30 parts per million of mercury by weight? (Assume that all the mercury from the fish ends up as mercury (II) chloride in the body and that a fatal dose is 0.20 g of HgCl2.) How many pounds of fish is this?arrow_forwardThe carbon dioxide exhaled in the breath of astronauts is often removed from the spacecraft by reaction with lithium hydroxide 2LiOH(s)+CO2(g)Li2CO3(s)+H2O(l) Estimate the grams of lithium hydroxide required per astronaut per day. Assume that each astronaut requires 2.50 103 kcal of energy per day. Further assume that this energy can be equated to the heat of combustion of a quantity of glucose, C6H12O6, to CO2(g) and H2O(l). From the amount of glucose required to give 2.50 103 kcal of heat, calculate the amount of CO2 produced and hence the amount of LiOH required. The H for glucose(s) is 1273 kJ/mol.arrow_forward4.22 Generally, an excess of O2 is needed for the reaction Sn+O2SnO2 . What is the minimum number of moles of oxygen required to oxidize 7.3 moles of tin?arrow_forward
- What is the molarity of a solution of sodium hydrogen sulfate that is prepared by dissolving 9.21 g NaHSO4 in enough water to form 2.00-L solution? What is the molarity of each ion in the solution?arrow_forwardNitric acid is produced commercially by the Ostwald process, represented by the following equations: 4NH3(g)+5O24NO(g)+6H2O(g)2NO(g)+O2(g)2NO2(g)3NO2(g)+H2O(l)2HNO3(aq)+NO(g) What mass of NH3 must be used to produce 1.0 106 kg HNO3 by the Ostwald process? Assume 100% yield in each reaction, and assume that the NO produced in the third step is not recycled.arrow_forwardIodine can be prepared by allowing an aqueous solution of hydrogen iodide to react with manganese dioxide, MnO2. The reaction is 2I(aq)+4H+(aq)+MnO2(s)Mn2+(aq)+2H2O+I2(s) If an excess of hydrogen iodide is added to 0.200 g of MnO2, how many grams of iodine are obtained, assuming 100% yield?arrow_forward
- Phosphoric acid, H3PO4, can be prepared by the reaction of phosphorus(V) oxide, P4O10, with water. 14P4O10(s)+32H2O(l)H3PO4(aq);H=96.2kJ What is H for the reaction involving 1 mol of P4O10? P4O10(s)+6H2O(l)4H3PO4(aq)arrow_forwardMany cereals are made with high moisture content so that the cereal can be formed into various shapes before it is dried. A cereal product containing 58% H2O by mass is produced at the rate of 1000. kg/h. What mass of water must be evaporated per hour if the final product contains only 20.% water?arrow_forwardWrite a balanced equation for the reaction of hydroiodic acid, HI, with calcium hydroxide, Ca(OH)2. Then, write the balanced complete ionic equation and the net ionic equation for this neutralization reaction.arrow_forward
- Complete and balance the equations of the following reactions, each of which could be used to remove hydrogen sulfide from natural gas: (a) Ca(OH)2(s)+H2S(g) (b) Na2CO3(aq)+H2S(g)arrow_forwardWhen tin comes into contact with oxygen in the air, tin (IV) oxide, SnO2 is formed. Sn (s) + O2 (g) SnO2 (s) A piece of tin foil, 8.25 cm x 21.5 cm x 0.600 mm (d = 7.28 g / cm), exposed to oxygen. (A) Assuming the reaction of all tin, what is the mass of the oxidized tin foil? (B) Air is about 21% oxygen by volume (d = 1.309 g / L at 25 ° C, 1 atm). How many liters of air is required to fully react with tin foil?arrow_forward5.0g of solid zinc carbonate are heated to produce oxide and carbon dioxide. (a) Write a balanced chemical equation for the reaction. States are required. (b) Calculate the mass of carbon dioxide produced in the reaction.arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning