
Concept explainers
(a)
The speed and magnitude of the acceleration of a person standing on the equator.
(a)

Answer to Problem 67P
A person standing on the equator has a speed
Explanation of Solution
Given:
Time taken by the Earth to rotate once on its axis,
Radius of the Earth,
Formula used:
The speed
The person on the equator experiences a centripetal acceleration
The total acceleration at the equator is given by,
Calculation:
A person standing on the equator, revolves in a circular path of radius
Calculate speed
All particles fixed on the Earth experience a centripetal force directed towards the center of its circular path. Hence it would experience a centripetal acceleration towards the center of its circular path.
Calculate the centripetal acceleration
Express the acceleration as a percentage of
The total acceleration experienced by the person is given by equation (3).
Conclusion:
Thus, a person standing on the equator has a speed
(b)
The direction of the acceleration vector of the person on the equator.
(b)

Answer to Problem 67P
The acceleration vector of the person is directed towards the center of the Earth.
Explanation of Solution
Introduction:
A person on the surface of the Earth experiences two forces-(i) Gravitational force
An object in order to move in a circular path requires
Figure 1
However, the weight, as felt by the person on the surface of the earth, is equal to the Normal force he experiences.
Hence, the acceleration
Conclusion:
Thus, the acceleration vector of the person on the Equator is directed towards the center of the Earth.
(c)
The speed and magnitude of the acceleration of a person standing at
(c)

Answer to Problem 67P
The speed of the person at
Explanation of Solution
Given:
The latitude where the person was standing,
Radius of the earth at equator,
The speed of the person at equator,
The centripetal acceleration at the equator,
Formula used:
The person at
The speed of person at
His speed at equator is given by
From equations (4) and (5),
The centripetal acceleration at the equator is given by the expression,
The centripetal acceleration at
From equations (4) and (5),
The person also experiences acceleration
The magnitude of the resultant acceleration is determined by using parallelogram law of vectors.
Calculation:
The motion of the person at
Figure 2
From Figure 2, it can be seen that
Use equation (11) in equation (6).
Substitute the value of the variables in the above equation.
Use equation (11) in equation (9) and substitute the values of the variables to calculate the value of
The vector
Substitute the values of variables in equation (10) and calculate the magnitude of the resultant acceleration
Conclusion:
Thus, the speed of the person at
(d)
The angle between the direction of the acceleration at
(d)

Answer to Problem 67P
The angle between the direction of the acceleration at
Explanation of Solution
Given:
The magnitude of centripetal acceleration at
The value of acceleration of free fall,
The latitude where the person was standing,
Formula used:
The direction of the acceleration at the equator is along the horizontal direction parallel to the direction of the centripetal acceleration at
Hence the angle
The vector diagram representing the accelerations is shown below:
Figure 3
This is given by
Calculation:
Substitute the values of the variables in equation (12).
Conclusion:
Thus, the angle between the direction of the acceleration at
Want to see more full solutions like this?
Chapter 3 Solutions
Physics for Scientists and Engineers, Vol. 1
- Dear Scientist in physics , How are doing, my name is Yahya from Saudi Arabia and currently in my first semester to pursue Master's degree in physics. I have been watching all interviews of some scientists in physics on YouTube Channel and somthing has got my mind. I studied my bachelor 's degree in biology and I have been contacting Professor's Bruce Lipton many times and he explained epigenatic well. He was talking about physics many times. He said if you want to understand who we are and how we think, you need to understand Physics well. So I have decided to study physics. I have some questions : Why is the community of physics are divided? What is the difference between Quantum physics, quantum field theory, Quantim theory, and classical physics? What is quantum consciousness theory as well. What do they mean by wave function collapse? Why professor Roger's always has another opinions in quantum consciousness theory?? Best Regards, Yahyaarrow_forwardGiven water's mass of 18g/mole and the value of the fundamental charge (charge magnitude of the electron and proton), use the largest charge density from the article to determine what fraction of water molecules became ionized (charged) due to triboelectric effects when it flows through the material that causes the largest charge transfer. Give your answer in e/molecule, or electrons transferred per molecule of water. For instance, a value of 0.2 means only one in five molecules of water loses an electron, or that 0.2=20% of water molecules become chargedarrow_forwardno AI, pleasearrow_forward
- Sketch the resulting complex wave form, and then say whether it is a periodic or aperiodic wave.arrow_forwardDuring a concentric loading of the quadriceps muscle in the upper leg, an athlete extends his lower leg from a vertical position (see figure (a)) to a fully extended horizontal position (see figure (b)) at a constant angular speed of 45.0° per second. Two of the four quadriceps muscles, the vastis intermedius and the rectus femoris, terminate at the patellar tendon which is attached to the top of the tibia in the lower leg. The distance from the point of attachment of the patellar tendon to the rotation axis of the tibia relative to the femur is 4.10 cm in this athlete. a b (a) The two quadriceps muscles can exert a maximum force of 225 N through the patellar tendon. This force is applied at an angle of 25.0° to the section of the tibia between the attachment point and the rotation axis. What is the torque (in N⚫ m) exerted by the muscle on the lower leg during this motion? (Enter the magnitude.) N⚫ m (b) What is the power (in W) generated by the athlete during the motion? W (c)…arrow_forward= A hanging weight, with a mass of m₁ = 0.365 kg, is attached by a rope to a block with mass m₂ 0.835 kg as shown in the figure below. The rope goes over a pulley with a mass of M = 0.350 kg. The pulley can be modeled as a hollow cylinder with an inner radius of R₁ = 0.0200 m, and an outer radius of R2 = 0.0300 m; the mass of the spokes is negligible. As the weight falls, the block slides on the table, and the coefficient of kinetic friction between the block and the table is μk = 0.250. At the instant shown, the block is moving with a velocity of v; = 0.820 m/s toward the pulley. Assume that the pulley is free to spin without friction, that the rope does not stretch and does not slip on the pulley, and that the mass of the rope is negligible. mq R₂ R₁ mi (a) Using energy methods, find the speed of the block (in m/s) after it has moved a distance of 0.700 m away from the initial position shown. m/s (b) What is the angular speed of the pulley (in rad/s) after the block has moved this…arrow_forward
- Two astronauts, each having a mass of 95.5 kg, are connected by a 10.0-m rope of negligible mass. They are isolated in space, moving in circles around the point halfway between them at a speed of 4.60 m/s. Treating the astronauts as particles, calculate each of the following. CG × d (a) the magnitude of the angular momentum of the system kg m2/s (b) the rotational energy of the system KJ By pulling on the rope, the astronauts shorten the distance between them to 5.00 m. (c) What is the new angular momentum of the system? kg m2/s (d) What are their new speeds? m/s (e) What is the new rotational energy of the system? KJ (f) How much work is done by the astronauts in shortening the rope? KJarrow_forwardA uniform horizontal disk of radius 5.50 m turns without friction at w = 2.55 rev/s on a vertical axis through its center, as in the figure below. A feedback mechanism senses the angular speed of the disk, and a drive motor at A ensures that the angular speed remain constant while a m = 1.20 kg block on top of the disk slides outward in a radial slot. The block starts at the center of the disk at time t = 0 and moves outward with constant speed v = 1.25 cm/s relative to the disk until it reaches the edge at t = 360 s. The sliding block experiences no friction. Its motion is constrained to have constant radial speed by a brake at B, producing tension in a light string tied to the block. (a) Find the torque as a function of time that the drive motor must provide while the block is sliding. Hint: The torque is given by t = 2mrvw. t N.m (b) Find the value of this torque at t = 360 s, just before the sliding block finishes its motion. N.m (c) Find the power which the drive motor must…arrow_forward(a) A planet is in an elliptical orbit around a distant star. At its closest approach, the planet is 0.670 AU from the star and has a speed of 54.0 km/s. When the planet is at its farthest distance from the star of 36.0 AU, what is its speed (in km/s)? (1 AU is the average distance from the Earth to the Sun and is equal to 1.496 × 1011 m. You may assume that other planets and smaller objects in the star system exert negligible forces on the planet.) km/s (b) What If? A comet is in a highly elliptical orbit around the same star. The comet's greatest distance from the star is 25,700 times larger than its closest distance to the star. The comet's speed at its greatest distance is 2.40 x 10-2 km/s. What is the speed (in km/s) of the comet at its closest approach? km/sarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





