The mass of compound is given. By using the mass, the number of phosphorous atoms present in each of the compound given in exercise 52 is to be determined. Concept introduction: The atomic mass is defined as the sum of number of protons and number of neutrons. Molar mass of a substance is defined as the mass of the substance in gram of one mole of that compound. The molar mass of any compound can be calculated by adding of atomic weight of individual atoms present in it. The amount of substance containing 12 g of pure carbon is called a mole. One mole of atoms always contains 6 .022 × 10 23 molecules. The number of molecules in one mole is also called Avogadro’s number . To determine : The number of phosphorous ( P ) atoms in 1 .00 g of P 4 O 6 .
The mass of compound is given. By using the mass, the number of phosphorous atoms present in each of the compound given in exercise 52 is to be determined. Concept introduction: The atomic mass is defined as the sum of number of protons and number of neutrons. Molar mass of a substance is defined as the mass of the substance in gram of one mole of that compound. The molar mass of any compound can be calculated by adding of atomic weight of individual atoms present in it. The amount of substance containing 12 g of pure carbon is called a mole. One mole of atoms always contains 6 .022 × 10 23 molecules. The number of molecules in one mole is also called Avogadro’s number . To determine : The number of phosphorous ( P ) atoms in 1 .00 g of P 4 O 6 .
Definition Definition Number of atoms/molecules present in one mole of any substance. Avogadro's number is a constant. Its value is 6.02214076 × 10 23 per mole.
Chapter 3, Problem 64E
(a)
Interpretation Introduction
Interpretation: The mass of compound is given. By using the mass, the number of phosphorous atoms present in each of the compound given in exercise 52 is to be determined.
Concept introduction: The atomic mass is defined as the sum of number of protons and number of neutrons.
Molar mass of a substance is defined as the mass of the substance in gram of one mole of that compound.
The molar mass of any compound can be calculated by adding of atomic weight of individual atoms present in it.
The amount of substance containing
12g of pure carbon is called a mole. One mole of atoms always contains
6.022×1023 molecules. The number of molecules in one mole is also called Avogadro’s number.
To determine: The number of phosphorous
(P) atoms in
1.00g of
P4O6.
(a)
Expert Solution
Explanation of Solution
Given
The mass of
P4O6 is
1.00g.
The molar mass of
P4O6 is
219.866g/mol.
Formula
The number of moles in
P4O6 is calculated as,
MolesofP4O6=MassofP4O6MolarmassofP4O6
Substitute the values of mass and molar mass of
P4O6 in above equation.
The number of atoms is calculated by multiplying the number of moles with Avogadro’s number.
(b)
Interpretation Introduction
Interpretation: The mass of compound is given. By using the mass, the number of phosphorous atoms present in each of the compound given in exercise 52 is to be determined.
Concept introduction: The atomic mass is defined as the sum of number of protons and number of neutrons.
Molar mass of a substance is defined as the mass of the substance in gram of one mole of that compound.
The molar mass of any compound can be calculated by adding of atomic weight of individual atoms present in it.
The amount of substance containing
12g of pure carbon is called a mole. One mole of atoms always contains
6.022×1023 molecules. The number of molecules in one mole is also called Avogadro’s number.
To determine: The number of phosphorous
(P) atoms in
1.00g of
Ca3(PO4)2.
(b)
Expert Solution
Explanation of Solution
Given
The mass of
Ca3(PO4)2 is
1.00g.
The molar mass of
Ca3(PO4)2 is
310.172g/mol.
Formula
The number of moles in
Ca3(PO4)2 is calculated as,
The number of atoms is calculated by multiplying the number of moles with Avogadro’s number.
(c)
Interpretation Introduction
Interpretation: The mass of compound is given. By using the mass, the number of phosphorous atoms present in each of the compound given in exercise 52 is to be determined.
Concept introduction: The atomic mass is defined as the sum of number of protons and number of neutrons.
Molar mass of a substance is defined as the mass of the substance in gram of one mole of that compound.
The molar mass of any compound can be calculated by adding of atomic weight of individual atoms present in it.
The amount of substance containing
12g of pure carbon is called a mole. One mole of atoms always contains
6.022×1023 molecules. The number of molecules in one mole is also called Avogadro’s number.
To determine: The number of phosphorous
(P) atoms in
1.00g of
Na2HPO4.
(c)
Expert Solution
Explanation of Solution
Given
The mass of
Na2HPO4 is
1.00g.
The molar mass of
Na2HPO4 is
141.955g/mol.
Formula
The number of moles in
Na2HPO4 is calculated as,
MolesofNa2HPO4=MassofNa2HPO4MolarmassofNa2HPO4
Substitute the values of mass and molar mass of
Na2HPO4 in above equation.
Five chemistry project topic that does not involve practical
Please correct answer and don't used hand raiting
Q2. Consider the hydrogenation of ethylene
C2H4 + H2 = C2H6
The heats of combustion and molar entropies for the three gases at 298 K are given by:
C2H4
C2H6
H2
AH comb/kJ mol¹
-1395
-1550
-243
Sº / J K¹ mol-1
220.7
230.4
131.1
The average heat capacity change, ACP, for the reaction over the temperature range 298-1000 K is
10.9 J K¹ mol¹. Using these data, determine:
(a) the standard enthalpy change at 800 K
(b) the standard entropy change at 800 K
(c) the equilibrium constant at 800 K.
Chapter 3 Solutions
Student Solutions Manual for Zumdahl/Zumdahl/DeCoste?s Chemistry, 10th Edition