Concept explainers
Using proportions A proportion is defined as an equality between two ratios; for instance,
Suppose that a small pizza costs a certain amount. How much should a larger pizza of the same thickness cost? If the cost depends on the amount of ingredients used, then the cost should increase in proportion to the pizza’s area and not in proportion to its diameter.
Let us rearrange Eq. (3.10) so the two variable quantities (cost and radius) are on the right side of the equation and the constants are on the left.
This equation should apply to any size pizza If r increases, the cost should Increase so that the ratio
For example, if a 3.5-in -radius pizza costs $4.00, then a 5.0-in radius pizza should cost
This process can be used for most equations relating two quantities that change while all other quantities remain constant.
The downward distance d that an object falls in a time interval t if starting at rest is
On the Moon, a rock falls 10.0 m in 3.50 s How far will the object fall in 5.00 s, assuming the same acceleration?
a. 14.3 m
b. 20.4 m
c. 4.90 m
d. 7.00 m
e. 100 m
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
COLLEGE PHYSICS:VOL.1
Additional Science Textbook Solutions
Campbell Biology (11th Edition)
Brock Biology of Microorganisms (15th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Concepts of Genetics (12th Edition)
Organic Chemistry (8th Edition)
College Physics: A Strategic Approach (3rd Edition)
- No chatgpt plsarrow_forwardhelp me with the experimental set up for the excel i did. the grapharrow_forwardWhich of the following best describes how to calculate the average acceleration of any object? Average acceleration is always halfway between the initial acceleration of an object and its final acceleration. Average acceleration is always equal to the change in velocity of an object divided by the time interval. Average acceleration is always equal to the displacement of an object divided by the time interval. Average acceleration is always equal to the change in speed of an object divided by the time interval.arrow_forward
- The figure shows the velocity versus time graph for a car driving on a straight road. Which of the following best describes the acceleration of the car? v (m/s) t(s) The acceleration of the car is negative and decreasing. The acceleration of the car is constant. The acceleration of the car is positive and increasing. The acceleration of the car is positive and decreasing. The acceleration of the car is negative and increasing.arrow_forwardWhich figure could represent the velocity versus time graph of a motorcycle whose speed is increasing? v (m/s) v (m/s) t(s) t(s)arrow_forwardUnlike speed, velocity is a the statement? Poisition. Direction. Vector. Scalar. quantity. Which one of the following completesarrow_forward
- No chatgpt pls will upvote Already got wrong chatgpt answerarrow_forward3.63 • Leaping the River II. A physics professor did daredevil stunts in his spare time. His last stunt was an attempt to jump across a river on a motorcycle (Fig. P3.63). The takeoff ramp was inclined at 53.0°, the river was 40.0 m wide, and the far bank was 15.0 m lower than the top of the ramp. The river itself was 100 m below the ramp. Ignore air resistance. (a) What should his speed have been at the top of the ramp to have just made it to the edge of the far bank? (b) If his speed was only half the value found in part (a), where did he land? Figure P3.63 53.0° 100 m 40.0 m→ 15.0 marrow_forwardPlease solve and answer the question correctly please. Thank you!!arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning