Concept explainers
The two skaters of Exercise 56 are moving in opposite directions when they collide and stick together. Answer the same questions for this case.
(a)
The final speed of the system.
Answer to Problem 57E
The final speed of the system is
Explanation of Solution
Given info: Mass of the first skater is
Write the expression from conservation of momentum.
Here,
Substitute
Conclusion:
Therefore, the final speed of the system is
(b)
The amount of kinetic energy lost.
Answer to Problem 57E
The amount of kinetic energy lost is
Explanation of Solution
Given info: Mass of the first skater is
Write the expression for kinetic energy lost.
Here,
Substitute
Conclusion:
The amount of kinetic energy lost is
Want to see more full solutions like this?
Chapter 3 Solutions
Physical Universe
- A ballistic pendulum is used to measure the speed of bullets. It comprises a heavy block of wood of mass M suspended by two long cords. A bullet of mass m is fired into the block horizontally. The block, with the bullet embedded in it, swings upward (Fig. P10.70). The center of mass of the combination rises through a vertical distance h before coming to rest momentarily. In a particular experiment, a bullet of mass 40.0 g is fired into a wooden block of mass 10.0 kg. The blockbullet combination is observed to rise to a maximum height of 20.0 cm above the blocks initial height. a. What is the initial speed of the bullet? b. What is the fraction of initial kinetic energy lost after the bullet is embedded in the block? FIGURE P10.70arrow_forwardTwo objects of equal mass are moving with equal and opposite velocities when they collide. Can all the kinetic energy be lost in the collision?arrow_forwardYour physical education teacher throws a baseball to you at a certain speed and you catch it. The teacher is next going to throw you a medicine ball whose mass is ten times the mass of the baseball. You are given the following choices: You can have the medicine ball thrown with (a) the same speed as the baseball, (b) the same momentum, or (c) the same kinetic energy. Rank these choices from easiest to hardest to catch.arrow_forward
- From what might be a possible scene in the comic book The X-Men, the Juggernaut (mJ) is charging into Colossus (mC) and the two collide. The initial speed of the Juggernaut is vJi and the initial speed of Colossus is vCi. After the collision, the final speed of the Juggernaut is vJf and the final speed of Colossus is vCf as they each bounce off of the other, heading in opposite directions. a. What is the impulse experienced by the Juggernaut? b. What is the impulse experienced by Colossus? c. In your own words, explain how these impulses must compare with each other and how they are related to the average force each superhero experiences during the collision.arrow_forwardA 0.0250-kg bullet is accelerated from rest to a speed of 550 m/s in a 3.00-kg rifle. The pain of the rifle's kick is much worse if you hold the gun loosely a few centimeters from your shoulder rather than holding it tightly against your shoulder. (a) Calculate the recoil velocity of the rifle if it is held loosely away from the shoulder. (b) How much kinetic energy does the rifle gain? (c) What is the recoil velocity if the rifle is held tightly against the shoulder, making the effective mass 28.0 kg? (d) How much kinetic energy is transferred to the rifle shoulder combination? The pain is related to the amount of kinetic energy, which is significantly less in this latter situation. (e) Calculate the momentum of a 110-kg football player running at 8.00 m/s. Compare the player's momentum with the momentum of a hard-thrown 0.410-kg football that has a speed of 25.0 m/s. Discuss its relationship to this problem.arrow_forwardA 100-g firecracker is launched vertically into the air and explodes into two pieces at the peak of its trajectory. If a 72-g piece is projected horizontally to the left at 20 m/s, what is the speed and direction of the other piece?arrow_forward
- This is a symbolic version of Problem 23. A girl of mass mG is standing on a plank of mass mp. Both are originally at rest on a frozen lake that constitutes a frictionless, flat surface. The girl begins to walk along the plank at a constant velocity vGP to the right relative to the plank. (The subscript GP denotes the girl relative to plank.) (a) What is the velocity vPI of the plank relative to the surface of the ice? (b) What is the girls velocity vGI relative to the ice surface?arrow_forwardA particle of mass m moving along the x-axis with a velocity component +u collides head-on and sticks to a particle of mass m/3 moving along the x-axis with the velocity component −u. What is the mass M of the resulting particle?arrow_forwardSand from a stationary hopper falls onto a moving conveyor belt at the rate of 5.00 kg/s as shown in Figure P8.64. The conveyor belt is supported by frictionless rollers and moves at a constant speed of v = 0.750 m/s under the action of a constant horizontal external force Fext supplied by the motor that drives the belt. Find (a) the sands rate of change of momentum in the horizontal direction, (b) the force of friction exerted by the belt on the sand, (c) the external force Fext, (d) the work done by Fext in 1 s, and (e) the kinetic energy acquired by the falling sand each second due to the change in its horizontal motion. (f) Why are the answers to parts (d) and (e) different? Figure P8.64arrow_forward
- If a player can toss a 0.200-kg ball with as much momentum as a 2.00-g object moving with a speed of 3.2 x 10^3 m/s. What must be the ball’s speed?arrow_forwardA sandbag is motionless in outer space. A second sandbag with two times the massmoving at 12 m/s collides with it and they both stick together and move at a speed of ____m/s.arrow_forwardYou are doing an experiment in the classroom with a ramp and two balls of EQUAL mass. The balls are released at the same time and start rolling down the incline. (you are supposed to see that all is not perfect. we don’t expect the identical balls to travel down the ramp at the exact same time, only close. you should see that if the balls are close ‘within 1 or 2 cm’, we will call it identical. Why do they NOT travel down the ramp exactly together?arrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning